Inverse Electron Demand Diels-Alder Reactions of N-Sulfonyl α, β-Unsaturated Imines: A General Approach to Implementation of the 4π Participation of 1-Aza-1,3-butadienes in Diels-Alder Reactions

Dale L. Boger,* Wendy L. Corbett, Timothy T. Curran, and A. M. Kasper
Contribution from the Department of Chemistry, Purdue University, West Lafayette, Indiana 47907. Received September 4, 1990

Abstract

Full details of a study of the inverse electron demand Diels-Alder reactions of N-sulfonyl-1-aza-1,3-butadienes are described. The α, β-unsaturated N-sulfonylimines proved accessible through clean, homolytic rearrangement of in situ generated oxime O-sulfinyl compounds or through direct condensation of sulfonamides with α, β-unsaturated aldehydes. Thermal- or pressure-promoted [$4+2$] cycloaddition reactions of the N-sulfonyl-1-aza-1,3-butadienes with electron-rich olefins generally provided a single cycloadduct derived from predominant ($\geq 20: 1$) cycloaddition through an endo transition state. The complementary C 3 addition of an electron-withdrawing substituent to the N-sulfonyl-1-aza-1,3-butadienes substantially accelerated their participation in the $\mathrm{LUMO}_{\text {diene }}$-controlled Diels-Alder reactions and such reactions may be conducted at $25^{\circ} \mathrm{C}$. Characteristic of a concerted [$4+2$] cycloaddition reaction, the reactions were found to proceed with full preservation of the dienophile olefin stereochemistry, to exhibit little solvent dependency on the [$4+2$] cycloaddition rate, trans 1,2 -disubstituted dienophiles were shown to be more reactive than cis 1,2 -disubstituted dienophiles, and the cis versus trans 1,2 -disubstituted dienophiles were shown to exhibit a preferential pressure-induced rate acceleration. In addition, the noncomplementary C 2 or C 4 addition of an electron-withdrawing substituent to the N-sulfonyl-1-aza-1,3-butadienes accelerated the azadiene participation in $\mathrm{LUMO} \mathrm{diene}^{-c o n t r o l l e d ~ D i e l s-A l d e r ~ r e a c t i o n s ~}\left(25^{\circ} \mathrm{C}\right)$ that maintain the regioselectivity and endo diastereoselectivity of the parent azadienes and that display characteristics consistent with concerted [$4+2$] cycloaddition reactions. Computational studies support the observed endo diastereoselectivity that may be derived from a pronounced, stabilizing secondary orbital interaction. However, the unusually high endo diastereoselectivity ($\geq 20: 1$) suggests this may only be part of the origin of the cycloaddition selectivity. It is suggested that the endo [$4+2$] cycloaddition transition state in which the lone pair on nitrogen and the $\sigma \mathrm{C}-\mathrm{O}$ bond of the dienophile lie trans periplanar further benefits from a $n-\sigma^{*}$ stabilization in a manner analogous to the product ground-state conformation (anomeric effect).

The Diels-Alder 4π participation of simple α, β-unsaturated imines is rarely observed and typically suffers low conversions, competitive imine addition, and/or imine tautomerization precluding [$4+2$] cycloaddition. ${ }^{1,2}$ Consequently, only a limited number of 1 -aza-1,3-butadiene structural variations and modified or restricted reaction conditions have been introduced that have permitted the productive 4π participation of α, β-unsaturated imines in $[4+2]$ cycloaddition reactions. ${ }^{3-7}$ These include the use of the intramolecular [$4+2$] cycloaddition reactions of in situ generated N-acyl-1-aza-1,3-butadienes ${ }^{3}$ (flash vacuum pyrolysis) and in situ generated o-quinomethide monoimines, ${ }^{4}$ the $\mathrm{HOMO}_{\text {diene }}$-controlled Diels-Alder reactions of α, β-unsaturated

[^0]Scheme I

N, N-dimethylhydrazones (N^{1}-(dimethylamino)-1-aza-1,3-butadienes), ${ }^{5}$ and the Lewis acid catalyzed intramolecular [4+2] cycloaddition reactions of in situ generated 2 -(tert-butyldi-methylsilyl)oxy]- and 2-[(trimethylsilyl)oxy]-1-aza-1,3-butadienes. ${ }^{6,7}$ In the conduct of synthetic studies on the [$\left.4+2\right]$ cycloaddition reactions of hetero dienes, ${ }^{8,9}$ we have examined alternative approaches to promote the 4π participation of 1 -aza-1,3-butadienes in intermolecular [$4+2$] cycloaddition reactions. The complementary N 1 or C 3 substitution of an α, β-unsaturated imine with an electron-withdrawing substituent would be expected to accentuate the inherent electron-deficient nature of the 1 -aza-1,3-butadiene and accelerate its potential [$4+2$] cycloaddition reaction with electron-rich dienophiles in $\mathrm{LUMO}_{\text {diene-controlled }}$ Diels-Alder reactions. ${ }^{1-2}$ In addition, a bulky electron-withdrawing N1 substituent would be expected to preferentially decelerate

[^1]Table I

dienophile, R	conditions ${ }^{a}$ temp (${ }^{\circ} \mathrm{C}$), time (h), solvent, pressure (kbar)	product, endo:exo (\% yield)
3a, Et	$25,87, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 12$	2d, >20:1 (89)
3a, Et	110, 48, toluene	2d, >20:1 (79)
3b, $\mathrm{CH}_{2} \mathrm{Ph}$	25, 70, neat, 12	2e, >20:1 (74)
4b, $\mathrm{CH}_{2} \mathrm{Ph}^{\text {b }}$	$25,72, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 12$	2f, $>20: 1$ (28)
5	$25,72, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 12$	2g, $>20: 1$ (54)
5	140, 24, mesitylene	2g, >20:1 (23)
6	$25,76, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 12$	2h, >20:1 (82)
7	$25,96, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 12$	2 i , (63)

[^2]1,2 -imine addition relative to [$4+2$] cycloaddition and stabilize [$4+2$] cycloaddition product (deactivated enamine) to the reaction conditions while enhancing the electron-deficient nature of the diene. Herein, we provide full details of a comparative study of the 4π participation of N^{1}-substituted α, β-unsaturated imines in $\mathrm{LUMO}_{\text {diene }}$-controlled Diels-Alder reactions that have revealed the general, well-defined 4π participation of α, β-unsaturated N-sulfonylimines in regiospecific and endo-specific inverse electron demand Diels-Alder reactions suitable for the diastereoselective preparation of substituted 1,2,3,4-tetrahydropyridines. ${ }^{10-14}$
N-Sulfonyl-1-aza-1,3-butadienes: Synthesis and Comparative [$\mathbf{4 + 2}$] Cycloaddition Reactivity. Representative results of initial studies employing stable imine derivatives of 1 -acetyl-1-cyclohexene are summarized in Scheme I. The use of derivatives of 1-acetylcyclohexene for initial study represented the selection of a test 1 -aza-1,3-butadiene system (1) that is capable of imine tautomerization, (2) that possesses no selected $s-Z$ - versus $s-E$ diene conformational bias, (3) that presents substantial dienedienophile steric interactions in the developing [4 + 2] transition state (N1, C2, C3, and C4 diene substituents), and (4) that suffers from the introduction of $\mathrm{A}^{1,2}$-strain accompanying the [$4+2$] cycloaddition. This latter effect generally conveys a preference for 1,2 - versus 1,4 -addition to such systems. Thus, the derivatives $\mathbf{2 a - d}$ were selected for initial comparison with expectations that the observation of [$4+2$] cycloaddition with electron-rich dienophiles would prove generally applicable. As illustrated by the results summarized in Scheme I, \mathbf{N}^{1}-substitution of a 1 -aza-1,3-butadiene with an electron-withdrawing substituent $\left(-\mathrm{SO}_{2} \mathrm{Ph},-\mathrm{P}(\mathrm{O}) \mathrm{Ph}_{2}\right.$) was found to facilitate its participation in $\mathrm{LUMO}_{\text {diene }}$-controlled Diels-Alder reactions. The N-(phenylsulfonyl)imine $1 \mathbf{d}^{15,16}$ and N-(diphenylphosphinyl)imine $\mathbf{1 c}^{17}$ proved to be stable imine derivatives capable of simple isolation and purification (SiO_{2} or Florisil chromatography), both exhibited good thermal $[4+2]$ cycloaddition reactivity with ethyl vinyl ether
(10) Boger, D. L.; Kasper, A. M. J. Am. Chem. Soc. 1989, Ill, 1517.
(11) Boger, D. L.; Corbett, W. L.; Wiggins, J. M. J. Org. Chem. 1990, 55 , 2999.
(12) Boger, D. L.; Curran, T. T. J. Org. Chem. 1990, 55, 5439.
(13) Teng, M.; Fowler, F. W. Tetrahedron Lett. 1989, 30, 2481 . Teng, M.; Fowler, F. W. J. Org. Chem. 1990, 55, 5646.
(14) Kim, J.-B.; Hall, H. K., Jr. Macromolecules 1988, 2l, 1547
(15) Brown, C.; Hudson, R. F.; Record, K. A. F. J. Chem. Soc., Perkin Trans. 2 1978. 822. Brown, C.; Hudson, R. F.; Record, K. A. F. J. Chem. Soc., Chem. Commun. 1977, 540 . Hudson, R. F.; Record, K. A. F. J. Chem Soc., Chem. Commun. 1976, 831.
(16) (a) Jennings, W. B.: Lovely, C. J. Tetrahedron Lett. 1988, 29, 3725. (b) Davis, F. A.; Lamendola, J., Jr.; Nadir, U.; Kluger, E. W.; Sedergran, T. C.; Panunto, T. W.; Billmers, R.; Jenkins, R., Jr.; Turchi, l. J.; Watson, W. H.; Chen, J. S.: Kimura, M. J. Am. Chem. Soc. 1980, 102, 2000. (c) Vishwakarma, L. C.; Stringer, O. D.; Davis, F. A. Org. Syn. 1988, 66, 203. (d) Albrecht, R.; Kresze, G.; Mlakar, B. Chem. Ber. 1964, 97, 483. Albrecht, R.; Kresze, G. Chem. Ber. 1965, 98, 1431. Melnick, M. J.; Freyer, A. J.; Weinreb, S. M. Tetrahedron Lett. 1988, 29, 3891.
(17) Kruglyak, Y. L.; Leibovskaya, G. A.; Sretenskaya, I. I.; Sheluchenko, V. V.; Martynov, 1. V. Zh. Obshch. Khim. 1968, 38, 943. Kruglyak, Y. L.; Landan, M. A.; Leibovskaya, G. A.; Martynou, 1. V.; Saltykova, L. I.; Sokalskii, M. A. Zh. Obshch. Khim. 1969, 39, 215. Krzyzanowska, B.; Stec, W. J. Synthesis 1978, 521; 1982, 270. Brown, C.; Hudson, R. F.; Maron, A.; Record, K. A. F. J. Chem. Soc., Chem. Commun. 1976, 663. Hudson, R. F.: Brown, C.; Maron, A. Chem. Ber. 1982, l/5, 2560.

Scheme II

($\mathbf{1 c} \cong \mathbf{1 d} \gg \mathbf{1 a}, \mathbf{b}$), and the $[4+2]$ cycloadducts $\mathbf{2 c}, \mathbf{d}$ proved stable to isolation and purification. ${ }^{18}$
Given the ease of its preparation and the anticipated synthetic generality of working with sulfonamides, 1d was selected for further study. The results of a study of the scope of the DielsAlder reactions of $1 \mathbf{d}$ with a range of electron-rich olefins are summarized in Scheme II and Table I. ${ }^{18}$ Both the thermal- and pressure-promoted [$4+2$] cycloaddition reactions cleanly provided the Diels-Alder cycloadducts, and the reactions proved to proceed predominately if not exclusively ($\geq 95 \%$) through an endo transition state with full preservation of the dienophile olefin geometry in the stereochemistry of the reaction products. Even in instances where the endo [$4+2$] cycloaddition is decelerated by destabilizing steric interactions introduced by an additional dienophile cis substituent (e.g., 4b), the exclusive formation of the product derived from $[4+2]$ cycloaddition through an endo transition state (e.g., $\mathbf{2 f}$) was observed albeit with formation at slower rates.

The results of the extension of these observations to the $\mathrm{LUMO}_{\text {diene }}$-controlled Diels-Alder reaction of ethyl vinyl ether with a full range of N-(phenylsulfonyl)-1-aza-1,3-butadienes derived from α, β-unsaturated ketones and aldehydes are summarized in Scheme III and Table II. The N-(phenylsulfonyl)imines proved to be readily accessible through the clean, homolytic rearrangement of in situ generated oxime O-phenylsulfinyl ${ }^{15}$ compounds (aldehyde and ketone precursors) or through the direct condensation of benzenesulfonamide with selected α, β-unsaturated aldehydes. ${ }^{16}$ In each instance, the thermal- or pressure-promoted [$4+2$] cycloaddition provided a single cycloadduct derived from the expected [$4+2$] cycloaddition regioselectivity that proved to be derived from predominate if not exclusive ($\geq 95 \%$) cycloaddition through an endo transition state. The N-phenylsulfonyl aldimines proved more reactive than N-phenylsulfonyl ketimines ($\mathrm{R}^{1}=\mathrm{H}>\mathrm{R}^{1}=\mathrm{CH}_{3}, \mathrm{C}_{6} \mathrm{H}_{5}$), and the complementary addition of a C3 electron-withdrawing substituent to the azadiene $\left(R^{2}=\right.$ $\mathrm{CO}_{2} \mathrm{R}^{1} \gg \mathrm{R}^{2}=\mathrm{H}, \mathrm{CH}_{3}$) substantially accelerated the N -(phe-nylsulfonyl)-1-aza-1,3-butadiene participation in the $\mathrm{LUMO}_{\text {diene }}$-controlled Diels-Alder reaction. Thus, the reaction of N^{1}-(phenylsulfonyl)imine 1 j possessing the additional C3 electron-withdrawing substituent was found to react with 1,1 dimethoxyethylene within 5 min at $25^{\circ} \mathrm{C}$ to provide the DielsAlder adduct 14 (79\%). Further consistent with the characteristics of a concerted [$4+2$] cycloaddition reaction, the reactions were found to proceed with full preservation of the dienophile olefin

[^3]Table II

diene, method (\% yield)	dienophile	conditions: ${ }^{a}$ equiv dienophile, temp or pressure, time (h), solvent	product, endo:exo (\% yield)	
1e, A (15)	3a	$10,6{ }^{\circ} \mathrm{C}(12)$, neat	8,	(73)
1f, A (90)	3a	5, 12 kbar (80), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$	9,	$>20: 1$ (69)
1g, A (50)	3a	5, 12 kbar (45), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$	10,	$>20: 1$ (77)
1h, B (50-68)	3a	5, 12 kbar (45), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$	11a,	>20:1 (72)
1h, A (28)	4b	$5,6 \mathrm{kbar}$ (144), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$	11b,	>20:1 (54)
1i, C (56)	3a	5, 12 kbar (45), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$	12,	(72)
1i, A (55)	3a	$10,40{ }^{\circ} \mathrm{C}(11), \mathrm{CH}_{2} \mathrm{Cl}_{2}$	12,	(82)
1j, A (47) ${ }^{\text {b }}$	3a	$5,100^{\circ} \mathrm{C}(12)$, dioxane		$>20: 1{ }^{(56)}$
1 j	3a	$10,100^{\circ} \mathrm{C}(72)$, dioxane	13.	>20:1 (89)
1 j	7	$10,25^{\circ} \mathrm{C}(5 \mathrm{~min}), \mathrm{CH}_{2} \mathrm{Cl}_{2}$	14.	(79)

${ }^{a}$ All pressure-promoted reactions were conducted at $25^{\circ} \mathrm{C}$. ${ }^{b}$ The (methylsulfonyl)imine was similarly prepared in 75% yield.
Table III. Theoretical Highest Occupied π Orbital (HOMO) and Lowest Unoccupied π Orbital (LUMO) of Azadienes and Enol Ether Dienophiles: AM1 ${ }^{a}$ (MNDO) ${ }^{b}$ Results

diene	$E(\mathrm{eV})$	coefficients				
$\begin{gathered} \mathrm{H}_{2} \mathrm{C}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2} \\ \text { HOMO } \\ \text { LUMO } \end{gathered}$	$\begin{gathered} -9.4(-9.2) \\ 0.5(0.4) \end{gathered}$	$\begin{aligned} & \mathrm{Cl} \\ & 0.56(0.56) \\ & 0.57(0.57) \end{aligned}$	$\begin{aligned} & \hline C 2 \\ & 0.43(0.44) \\ & -0.42(-0.43) \end{aligned}$	$\begin{array}{ll} \hline \text { C3 } \\ -0.43(-0.44) \\ -0.42(-0.43) \end{array}$	$\begin{aligned} & \mathrm{C} 4 \\ & -0.56(-0.56) \\ & 0.57(0.57) \end{aligned}$	
$\begin{gathered} \mathrm{H}_{2} \mathrm{C}=\mathrm{CH}-\mathrm{CH}=\mathrm{NH} \\ \text { HOMO } \\ \text { LUMO } \end{gathered}$	$\begin{gathered} -10.1(-10.0) \\ 0.4(0.3) \end{gathered}$	$\begin{aligned} & \mathrm{N} 1 \\ & 0.46(0.42) \\ & 0.50(0.48) \end{aligned}$	$\begin{aligned} & C 2 \\ & 0.24(0.20) \\ & -0.45(-0.45) \end{aligned}$	$\begin{aligned} & \text { C3 } \\ & -0.59(-0.62) \\ & -0.43(-0.44) \end{aligned}$	$\begin{aligned} & \text { C4 } \\ & -0.62(-0.63) \\ & 0.60(0.61) \end{aligned}$	
$\begin{gathered} \mathrm{H}_{2} \mathrm{C}=\mathrm{CH}-\mathrm{CH}=\mathrm{NSO}_{2} \mathrm{Ph} \\ \text { HOMO } \\ \text { LUMO } \end{gathered}$	$\begin{gathered} -11.1(-10.8) \\ -0.9(-0.7) \end{gathered}$	$\begin{aligned} & \text { N1 } \\ & 0.32(0.39) \\ & 0.50(0.47) \end{aligned}$	$\begin{aligned} & \text { C2 } \\ & 0.11(0.10) \\ & -0.58(0.58) \end{aligned}$	$\begin{aligned} & \text { C3 } \\ & -0.47(-0.66) \\ & -0.30(-0.30) \end{aligned}$	$\begin{aligned} & C 4 \\ & -0.46(-0.62) \\ & 0.53(0.57) \end{aligned}$	
$\begin{gathered} \mathrm{H}_{2} \mathrm{C}=\mathrm{CH}-\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)=\mathrm{NSO}_{2} \mathrm{Ph} \\ \text { HOMO } \\ \text { LUMO } \end{gathered}$	$\begin{gathered} -11.2(-10.9) \\ -1.1(-0.7) \end{gathered}$	$\begin{aligned} & \mathrm{N} 1 \\ & 0.32(0.20) \\ & 0.53(0.54) \end{aligned}$	$\begin{aligned} & C 2 \\ & 0.12(0.10) \\ & -0.60(-0.68) \end{aligned}$	$\begin{aligned} & \text { C3 } \\ & -0.55(-0.68) \\ & -0.21(-0.19) \end{aligned}$	$\begin{aligned} & \text { C4 } \\ & -0.55(-0.64) \\ & 0.47(0.34) \end{aligned}$	$\begin{aligned} & \mathrm{CO}_{2} \mathrm{CH}_{3} \\ & 0.05(0.12) \\ & -0.10(-0.14) \end{aligned}$
$\begin{gathered} \mathrm{H}_{2} \mathrm{C}=\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)-\mathrm{CH}=\mathrm{NSO}_{2} \mathrm{Ph} \\ \text { HOMO } \\ \text { LUMO } \end{gathered}$	$\begin{gathered} -11.5(-11.2) \\ -1.3(-0.8) \end{gathered}$	$\begin{aligned} & \text { N1 } \\ & 0.41(0.30) \\ & 0.40(0.39) \end{aligned}$	$\begin{aligned} & \text { C2 } \\ & 0.14(0.11) \\ & -0.42(-0.47) \end{aligned}$	$\begin{aligned} & \text { C3 } \\ & -0.58(-0.64) \\ & -0.34(-0.33) \end{aligned}$	$\begin{aligned} & \text { C4 } \\ & -0.54(-0.58) \\ & 0.63(0.51) \end{aligned}$	$\begin{aligned} & \mathrm{CO}_{2} \mathrm{CH}_{3} \\ & 0.04(0.01) \\ & -0.18(-0.05) \end{aligned}$
$\begin{aligned} & \mathrm{HC}\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right)=\mathrm{CH}-\mathrm{CH}=\mathrm{NSO}_{2} \mathrm{Ph} \\ & \mathrm{HOMO} \\ & \text { LUMO } \end{aligned}$	$\begin{array}{r} -11.5(-11.3) \\ -1.5(-0.6) \end{array}$	$\begin{aligned} & \mathrm{N} 1 \\ & 0.32(0.21) \\ & 0.43(0.46) \end{aligned}$	$\begin{aligned} & \mathrm{C} 2 \\ & 0.11(0.09) \\ & -0.46(-0.57) \end{aligned}$	$\begin{aligned} & \text { C3 } \\ & -0.47(-0.63) \\ & -0.49(-0.42) \end{aligned}$	$\begin{aligned} & \text { C4 } \\ & -0.49(-0.63) \\ & 0.46(0.47) \end{aligned}$	$\begin{aligned} & \mathrm{CO}_{2} \mathrm{CH}_{3} \\ & -0.02(-0.03) \\ & 0.00(0.08) \end{aligned}$
$\begin{gathered} \mathrm{H}_{2} \mathrm{C}=\mathrm{CHOCH}_{3} \\ \text { HOMO } \\ \text { LUMO } \end{gathered}$	$\begin{gathered} -9.5(-9.4) \\ 1.4(1.2) \end{gathered}$	$\begin{aligned} & \mathrm{OCH}_{3} \\ & -0.51(-0.46) \\ & 0.21(0.20) \end{aligned}$	$\begin{aligned} & \mathrm{Cl} \\ & 0.48(0.51) \\ & 0.72(0.71) \end{aligned}$	$\begin{aligned} & \text { C2 } \\ & 0.69(0.71) \\ & -0.66(-0.66) \end{aligned}$		

${ }^{a}$ AM 1: Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stewart, J. J. P. J. Am. Chem. Soc. 1985, 107, 3902. ${ }^{b}$ MNDO: Dewar, M. J. S.; Thiel, W. J. Am. Chem. Soc. 1977, 99, 4894.

Table IV

16	17	18	19 or 20	21 or 22, ${ }^{\text {a }}$
R^{1}	(\% yield)	(\% yield)	(\% yield)	endo:exo (\% yield)
$\mathrm{C}_{6} \mathrm{H}_{5}$	17a (94)	18a (82)	19a (69)	21a, >20:1 (80)
			20a (64)	22a, >20:1 (61)
$\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CH}_{3}$	17b (89)	18b (55)	19b (64)	21b, >20:1 (55)
			20b (59)	22b, >20:1 (53)
CH_{3}	17c (72)	18c (72)	19c (45)	21c, $>20: 1$ (51)
			20c (56)	22c, >20: 1 (59)

${ }^{a}$ A total of 4 equiv of ethyl vinyl ether employed.
stereochemistry, to exhibit little solvent dependency on the [$4+$ 2] cycloaddition rate ($k_{\text {rel }}$ (ethyl vinyl ether): $\mathrm{CH}_{3} \mathrm{CN}$ (2), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1.5), toluene (1) for 1 e (eq 1)) and were found to react more

rel. rates: $\mathrm{CH}_{3} \mathrm{CN}$ (2), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1.5), toluene (1)
rapidly with trans 1,2 -disubstituted dienophiles than with cis 1,2-disubstituted dienophiles (1-(benzyloxy)propene: $k(E) / k(Z)$ $=6.3$ for 1 h$).{ }^{19} \quad \ln$ addition, even the α, β-unsaturated N^{1}.

[^4](phenylsulfonyl)imines that preferentially exist in the extended s - E-diene conformation (e.g., $\mathbf{1 h}$) were found to participate readily in the $\mathrm{LUMO}_{\text {diene }}$-controlled Diels-Alder reactions. The stereochemistry of the $[4+2]$ cycloaddition reaction products was established by spectroscopic techniques ${ }^{20}$ and was unambiguously confirmed with the single-crystal X-ray structure determination of adduct 9. ${ }^{21 a}$
(20) The X-ray crystal structure of 9 was consistent with the spectroscopically (${ }^{1} \mathrm{H} N \mathrm{NR}$) assigned structure and stereochemistry ($J_{\mathrm{C} 2}-\mathrm{H}_{\mathrm{eq}} / \mathrm{C} 3-\mathrm{H}_{\mathrm{ax}}$ $\leq 2.0-2.5 \mathrm{~Hz}, J_{\mathrm{C} 2}-\mathrm{H}_{\mathrm{eq}} / \mathrm{C}_{3}-\mathrm{H}_{\mathrm{ex}} \leq 4.0 \mathrm{~Hz}, J_{\mathrm{C} 3}-\mathrm{H}_{\mathrm{ax}} / \mathrm{C} 4-\mathrm{H}_{\mathrm{oq}}=7.0-9.0 \mathrm{~Hz}, J_{\mathrm{C} 3}-\mathrm{H}_{\mathrm{eq}} / \mathrm{C} 4-\mathrm{H}_{e \mathrm{eq}}$ $\left.\cong 4.0 \mathrm{~Hz},{ }^{1} J_{\mathrm{C} 2 / \mathrm{H} 2}=160-165 \mathrm{~Hz}\right)$. For 9: $J_{\mathrm{C} 2-\mathrm{H}_{\mathrm{oq}} / \mathrm{C} 3-\mathrm{H}_{80}}=2.3 \mathrm{~Hz}, J_{\mathrm{C} 2}-\mathrm{H}_{\mathrm{co}} / \mathrm{C}_{3} 3-\mathrm{H}_{\infty}$ $=4.0 \mathrm{~Hz}, J_{\mathrm{C} 3}-\mathrm{H}_{\mathrm{ax}} / \mathrm{C}_{4}-\mathrm{H}_{\mathrm{eq}}=8.6 \mathrm{~Hz}, J_{\mathrm{C} 3}-\mathrm{H}_{\mathrm{eq}} / \mathrm{C}_{2}-\mathrm{H}_{\mathrm{eq}}=4.0 \mathrm{~Hz},{ }_{\mathrm{C} 2 / \mathrm{H} 2}=163 \mathrm{~Hz}$. The stereochemistry of $\mathbf{2 c}-1$ and $\mathbf{8 - 1 4}$ was assigned spectroscopically. For example, the all-cis stereochemistry for 11b and the axial C2 OEt orientation were established spectroscopically: $J_{\mathrm{C} 2-\mathrm{H}_{\mathrm{a}} / \mathrm{C} 3-\mathrm{H}_{\mathrm{ax}}}=2.3 \mathrm{~Hz} ; J_{\mathrm{C}_{3}-\mathrm{H}_{\mathrm{fx}} / \mathrm{C}_{4}-\mathrm{H}_{\mathrm{A}}}=7.7$ $\mathrm{Hz},{ }^{1} J_{\mathrm{C} 2 / \mathrm{H}_{2}}=166 \mathrm{~Hz}$. The ${ }^{1} J$ for an axial $\mathrm{C}-\mathrm{H}$ adjacent to ${ }^{3} \mathrm{~N}^{(0)}($ or O$)$ in a six-membered ring is significantly smaller (ca. 10 Hz) than ${ }^{1} J$ for an equatorial C-H, ${ }^{1} J_{\mathrm{C}-\mathrm{H}_{\mathrm{x}}}<{ }^{1} J_{\mathrm{C}-\mathrm{H}_{\alpha}}$. Takeuchi, Y. J. Chem. Soc., Chem. Commun. 1974, 210; Binst, G. V.; Tourwe, D. Heterocycles 1973, $l, 257$. This characteristically large $\mathrm{C} 2 / \mathrm{H} 2$ coupling constant proved diagnostic in the conformational assignment (i.e., axial OR) and subsequent spectroscopic interpretation of coupling constants.
(21) (a) Full details of the X-ray structure determination of 9 have been provided elsewhere. ${ }^{10}$ Supplementary material includes an ORTEP representation of 9 that illustrates the $\mathrm{C} 2 / \mathrm{C} 4$ relative stereochemistry, the axial orientation of C2 OEt, the pseudoaxial orientation of C4 phenyl, and the near-planar N^{\prime}-nitrogen that lies approximately $0.21 \AA$ above the plane of the attached substituents syn to the C 2 OEt . (b) Full details of the X-ray structure determination of 21a and 28a have been provided elsewhere. 11 Supplementary material includes an ORTEP representation of 21a and 28a. (c) Full details of the X-ray structure determinations of 40 -endo, 45 -endo, and 48 -endo have been provided elsewhere. ${ }^{12}$ Supplementary material includes ORTEP representations of the structures.

Scheme III

$\mathrm{R}^{\prime}=\mathrm{CH}_{2} \mathrm{Ph}, \mathrm{R}=\mathrm{CH}_{3}$

Computational studies summarized in Table 11I support the observation of the expected [$4+2]$ cycloaddition regioselectivity and endo diastereoselectivity. The magnitude of the $\mathrm{LUMO}_{\text {diene }}$ C 4 coefficient proved largest of the diene termini supporting the

Figure 1.
observed cycloaddition regioselectivity. In the instances where the diene termini LUMO coefficients proved comparable in magnitude, the strong secondary orbital interactions ($\mathrm{LUMO}_{\text {diene }}$ C 2 and $\mathrm{HOMO}_{\text {dienophite }} \mathrm{OR}$) may serve to dictate the reaction regioselectivity as well as the reaction diastereoselectivity. The sequential Nl and C 3 addition of electron-withdrawing substituents ($-\mathrm{SO}_{2} \mathrm{Ph}$ and $-\mathrm{CO}_{2} \mathrm{Me}$, respectively) substantially lowers the azadiene $E_{\text {LUMO }}$ supporting the observed rate acceleration in the $\mathrm{LUMO}_{\text {diene }}$-controlled $[4+2]$ cycloaddition. In addition, the computational studies suggest that the unusually high endo diastereoselectivity may be derived in part from a pronounced stabilizing secondary orbital interaction between diene C2 (LUMO) and the dienophile OR (HOMO). However, the degree of endo diastereoselectivity observed with the N-sulfonyl-1-aza-1,3-butadienes exceeds that customarily observed in thermal [4 +2] cycloaddition reactions, suggesting that this stabilizing secondary orbital interaction may only be part of the origin of the diastereoselectivity. In addition and as a consequence of the boat transition state for the $[4+2]$ cycloaddition reaction, the lone pair on nitrogen and the $\sigma \mathrm{C}$-O bond of the dienophile lie trans periplanar to each other in the preferred endo transition state, suggesting a $n-\sigma^{*}$ stabilization of the endo transition state comparable to that responsible for the ground-state anomeric effect. A similar stabilizing $n-\sigma^{*}$ interaction is not present in the exo [$4+2]$ cycloaddition transition state, and this difference may further contribute to the unusually high endo diastereoselectivity observed in the Diels-Alder reactions of such systems (Figure 1).

Room-Temperature, Endo-Specific 1-Aza-1,3-butadiene DielsAlder Reactions: Acceleration of the $\mathbf{L U M O}_{\text {diene }}$-Controlled $[4+$ 2] Cycloaddition Reactions through Noncomplementary Azadiene Substitution. In the preceding efforts, the 4π participation of simple, stable N-(phenylsulfonyl)-1-aza-1,3-butadienes in regiospecific and endo-specific inverse electron demand Diels-Alder reactions was observed under the mild thermal conditions of ca. $100^{\circ} \mathrm{C}$, and the complementary substitution of the $1-$ aza- 1,3 butadienes with a C 3 electron-withdrawing substituent was shown to predictably accelerate the $[4+2]$ cycloadditioin reaction to the extent that the reaction may be observed at $25^{\circ} \mathrm{C}$. In contrast to the complementary C 3 addition of an electron-withdrawing substituent to the 1-aza-1,3-butadiene system, the noncomplementary C 2 or C 4 addition of an electron-withdrawing group would not be expected to additionally stabilize a developing zwitterionic or biradical transition state for a [$4+2]$ cycloaddition reaction. However, the AMI computational studies detailed in Table 111 illustrate that the noncomplementary C2 and/or C4 addition of an electron-withdrawing substituent to the 1 -azadiene lowers the $\mathrm{LUMO}_{\text {diene }}$ and may serve to accelerate its participation in a LUMO diene-controlled reaction. This, as well as the effect of the size of sulfonyl substituent on the diastereoselectivity of the $[4+2]$ cycloaddition reaction, was examined through the preparation and study of N -(phenylsulfonyl)- and N -(methyl-sulfonyl)-2-(ethoxycarbonyl)-1-aza-1,3-butadienes 19 and 20.

Scheme IV

Table V

dienophile, R	conditions: ${ }^{a}$ temp $\left({ }^{\circ} \mathrm{C}\right)$, time (h), solvent, pressure (kbar)	product, endo:exo (\% yield)
3a, Et	25, 24, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$	21a, >20:1 (80)
3b, $\mathrm{CH}_{2} \mathrm{Ph}$	25, $15, \mathrm{CH}_{2} \mathrm{Cl}_{2}$	27b, >20:1 (84)
4a, Et	25, 120, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$	28a, >20:1 (49)
4a, Et	25, 96, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 6.2$	28a, >20:1 (54)
4b, $\mathrm{CH}_{2} \mathrm{Ph}$	$25,104, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 6.2$	28b, >20:1 (50)
23a, H	25, $96, \mathrm{CH}_{2} \mathrm{Cl}_{2}$	29a, (0)
23a, H	80, 7 days, toluene	29a, (0)
23a, H	25, 67, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 6.2$	29a, >20:1 (37)
23a, H	25, $97, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 13.0$	29a, >20:1 (48)
23b, OCH_{3}	25, 72, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$	29b, >20:1 (12)
23b, OCH_{3}	80, 48, toluene	29b, >20:1 (46)
23b, OCH_{3}	25, 97, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 13.0$	29b, >20:1 (87)
24a, Et	25, 36, $\mathrm{CH}_{2} \mathrm{Cl}_{2} 6.2$	30a, >20:1 (65)
7	$25,1, \mathrm{CH}_{2} \mathrm{Cl}_{2}$	31, (58)
25	$25,97, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 6.2$	32, >20:1 (50)
26	$25,97, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 6.2$	33, >20:1 (68)

${ }^{a}$ A total of 4 equiv of dienophile employed.

The 4 -substituted N-(phenylsulfonyl)- and N-(methyl-sulfonyl)-2-(ethoxycarbonyl)-1-aza-1,3-butadienes 19 and $\mathbf{2 0}$ were prepared through Wittig reaction of the stabilized phosphorane generated in situ from the phosphonium salt $15^{22}\left(\mathrm{~K}_{2} \mathrm{CO}_{3}, 25^{\circ} \mathrm{C}\right.$, DMF) with aldehydes ($25^{\circ} \mathrm{C}, \mathrm{DMF}, 20-40 \mathrm{~h}, 94-72 \%$) followed by acid-catalyzed removal of the tetrahydropyranyl (THP) group ($\mathrm{HOAc} / \mathrm{H}_{2} \mathrm{O} / \mathrm{THF}, 3: 1: 1,55^{\circ} \mathrm{C}, 37-53 \mathrm{~h}$) ${ }^{23} \mathrm{O}$-phenylsulfinyl or O-methylsulfinyl formation (PhSOCl or $\mathrm{CH}_{3} \mathrm{SOCl}, \mathrm{Et}_{3} \mathrm{~N}, 0$ ${ }^{\circ} \mathrm{C}, \mathrm{CCl}_{4}$ or $\mathrm{Et}_{2} \mathrm{O}, 0.5-1.0 \mathrm{~h}$), and subsequent in situ homolytic rearrangement ($25^{\circ} \mathrm{C}, 1-3 \mathrm{~h}$) to provide 19 and 20 (Scheme IV and Table IV). ${ }^{24}$ The results of the $[4+2]$ cycloaddition reaction of 19 and 20 with ethyl vinyl ether ($25^{\circ} \mathrm{C}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.2-0.5 \mathrm{M}$, 17-26 h) conducted at room temperature are detailed in Table IV, and the comparative results of the reaction of 19 a with a range of dienophiles are summarized in Scheme V and Table V. The

[^5]Scheme V

assigned stereochemistry of the [$4+2]$ cycloadducts was derived initially from diagnostic ${ }^{1} \mathrm{H}$ NMR chemical shifts and coupling constants, ${ }^{25}$ was supported by 2-D NOE experiments, ${ }^{26}$ and was unambiguously established with the single-crystal X-ray structure determinations of $\mathbf{2 1} a^{21 b}$ and $\mathbf{2 8} a^{21 b}$ coupled with chemical correlation (e.g., 30).

The [$4+2$] cycloaddition reactions of 19 and $\mathbf{2 0}$ with vinyl ethers were determined to proceed predominantly if not exclusively ($\geq 95 \%$) through an endo transition state, and the endo diastereoselectivity proved independent of the size of the N-sulfonyl substituent ($\mathrm{R}^{3}=\mathrm{Ph}=\mathrm{CH}_{3}$). In addition, the $[4+2]$ cycloaddition reactions were found to proceed with full preservation of the dienophile olefin geometry in the stereochemistry of the reaction products (Scheme V), to exhibit little solvent dependency on the $[4+2]$ cycloaddition rate ($k_{\text {rel }}$ (ethyl vinyl ether): $\mathrm{CH}_{3} \mathrm{CN}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2), \mathrm{C}_{6} \mathrm{H}_{6}$ (1) for 19a), and the noncomplementary C 2 addition of an electron-withdrawing group $\left(-\mathrm{CO}_{2} \mathrm{Et}\right)$ to the N-(phenylsulfonyl)-1-aza-1,3-butadiene was determined to substantially accelerate the rate of $[4+2]$ cycloaddition, eqs 2 and $3(k(19 a) / k(1 f$ or 1 h$)>20) .{ }^{27}$ Further consistent with the characteristics of a concerted Diels-Alder reaction, trans 1,2disubstituted dienophiles were found to react more rapidly than cis 1,2-disubstituted dienophiles with 19a $(k(E) / k(Z)=9.2(1$ atm), 5.6 (6.2 kbar) for 1 -ethoxypropene), ${ }^{28}$ the cis 1,2 -disubstituted dienophiles exhibited a preferential pressure-induced rate acceleration, and the $[4+2]$ cycloaddition reactions of the cis

[^6]

1,2-disubstituted dienophiles were found to proceed predominantly ($>95 \%$) through an endo transition state despite the increased destabilizing steric interactions (e.g., 28a). The azadiene 19a proved sufficiently reactive to undergo intermolecular [4+2] cycloaddition with a full range of dienophiles including the relatively unreactive olefins $23\left(\mathrm{R}=\mathrm{OCH}_{3}>\mathrm{H}\right.$, Scheme V), suggesting a broad and general scope for such 1-aza-1,3-butadiene Diels-Alder reactions. ${ }^{29}$ In addition, the studies demonstrate that the noncomplementary addition of a C 2 electron-withdrawing substituent $\left(-\mathrm{CO}_{2} \mathrm{Et}\right)$ to the N-sulfonyl-1-aza-1,3-butadienes predictably accelerates their 4π participation in $\mathrm{LUMO}_{\text {diene }}{ }^{-}$ controlled [$4+2$] cycloaddition reactions, maintains the expected cycloaddition regioselectivity, maintains or enhances the cycloaddition endo diastereoselectivity ($>95 \%$), and illustrates that the reactions display characteristics consistent with a concerted $\mathrm{LUMO}_{\text {diene- }}$-controlled $[4+2]$ cycloaddition reaction.

Room-Temperature, Endo-Selective LUMO diene -Controlled [4 +2] Cycloaddition Reactions of \boldsymbol{N}-Sulfonyl-4-(ethoxy-carbonyl)-1-aza-1,3-butadienes. Concurrent with our efforts, Fowler and Teng ${ }^{13}$ have examined the intra- and intermolecular [$4+2$] cycloaddition reactions of N -acyl-2-cyano-1-aza-1,3-butadienes and have disclosed that such dienes participate in [$4+$ 2] cycloaddition reactions with electron-rich dienophiles with a reactivity, regioselectivity, and diastereoselectivity comparable to the N-sulfonyl-2-(ethoxycarbonyl)-1-aza-1,3-butadienes. However, in contrast to our observation of the 2 -aryl-1,2,3,4tetrahydropyridine cycloaddition regioisomer derived from the [4 +2] cycloaddition of styrenes with 19a, Fowler and Teng ${ }^{13}$ have described the observation of the predominant 3 -aryl-1,2,3,4tetrahydropyridines with 34 albeit in mixtures ($8-1: 1$) with the 2 -aryl regioisomer, eq 4. Consequently, in efforts to define the

[^7]
Scheme VI

Table VI

diene	dienophile, R (equiv)	conditions: temp $\left({ }^{\circ} \mathrm{C}\right)$, time (h), solvent, pressure (kbar)	product, endo:exo (\% yield)
35	3a, Et (5)	21, 46, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$	37a, >20:1 (82)
35	3b, $\mathrm{CH}_{2} \mathrm{Ph}$ (5)	21, 46, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$	37b, >20:1 (88)
36	3a, Et (5)	21, 56, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$	38a, >20:1 (73)
35	24a, Me (3)	21, 37, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$	39a, 2.2:1 (93)
36	24a, Me (3)	21, 43, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$	39b, 2.2:1 (91)
35	24c, Ph (2.5)	21, 61, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$	40, 5:1 (61)
35	24c, Ph (2.5)	21, 47.5, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 13.3$	40, 4:1 (57)
35	23a (5)	80, 69, $\mathrm{C}_{6} \mathrm{H}_{6}$	41, 6.5:1 (45)
35	23a (2.5)	21, 45.5, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 13.3$	41, 11:1 (48)
35	4a, Me (4)	21, 69, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$	42a, > 20:1 (48)
35	4a, Me (2)	21, 45.5, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 13.3$	42a, >20:1 (50)
36	4a, Me (4)	21, 66, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$	42b, >20:1 (36)
35	4c, Ph (2)	40,64, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$	43, 1:3 (41)
35	4c, Ph (2.5)	21, 49.5, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 13.3$	43, 2.2:1 (42)
35	5 (5)	$0,82, \mathrm{CH}_{2} \mathrm{Cl}_{2}$	44, >20:1 (56)
35	26 (3)	21, 49.5, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 13.3$	45, >20:1 (42)
35	26 (3)	80, 21, $\mathrm{C}_{6} \mathrm{H}_{6}$	45, 8:1 (32)
35	25 (3)	21, 135, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$	46, 2.4:1 (71)
35	25 (2.5)	21, 49.5, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 13.3$	46, 2.2:1 (74)
35	23h, H (5)	21, 46, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$	47, $>20: 1$ (63)
35	23c, Me (2)	$80,53, \mathrm{C}_{6} \mathrm{H}_{6}$	48, 4:1 (44)
35	23c, Me (2.5)	21, 47.5, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 13.3$	48, $4: 1$ (60)

origin of the differences in the two systems, we have examined the [$4+2$] cycloaddition reactions of N-(phenylsulfonyl)- and N-(methylsulfonyl)-4-(ethoxycarbonyl)-1-aza-1,3-butadiene (35 and 36).

Controlled ozonolysis of ethyl sorbate ${ }^{30}$ followed by condensation of ethyl 4-oxo-2-butenoate with benzene- or methanesulfonamide
(29) Diene 19a failed to participate in a [4+2] cycloaddition reaction with 1-octene, methyl acrylate, and p-benzoquinone, and diene 35 failed to react with methyl acrylate and p-benzoquinone under reaction conditions detailed herein.
(0.5 equiv of $\mathrm{TiCl}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ for 8 h) provided N -(phe-nylsulfonyl)- and N-(methylsulfonyl)-4-(ethoxycarbonyl)-1-aza-1,3-butadiene (35 and $36,60-46 \%$). ${ }^{31}$ The results of a survey of [$4+2$] cycloaddition reactions of $\mathbf{3 5}$ and 36 with a full range of dienophiles are summarized in Scheme VI and Table VI. The structure and stereochemistry of the [$4+2$] cycloadducts were assigned initially on the basis of diagnostic ${ }^{1} \mathrm{H}$ NMR chemical shifts and coupling constants, ${ }^{32}$ were firmly established through NOE difference experiments, ${ }^{26}$ and were unambiguously established with the single-crystal X-ray structure determinations ${ }^{21 \mathrm{c}}$ of 40 -endo, 45 -endo, and 48 -endo in conjunction with the deliberate epimerization and interconversion studies. ${ }^{26}$

The $[4+2$] cycloaddition reactions of $\mathbf{3 5}$ and $\mathbf{3 6}$ were established to proceed predominantly or exclusively (2.2:1 to $\mathbf{> 2 0 : 1}$) through an endo transition state independent of the size of the N-sulfonyl substituent ($\mathrm{R}^{1}=\mathrm{Ph}=\mathrm{CH}_{3}$). Like observations made in earlier studies, the reactions of $\mathbf{3 5}$ and 36 with simple vinyl ethers ($\mathbf{3}$ and 5), cis 1,2 -disubstituted vinyl ethers possessing a small C 2 substituent (CH_{3} or $\mathrm{OAc}, \mathbf{4 a}$ and $\mathbf{2 6}$), and unsubstituted styrenes (23a,b) proceed with high (11:1 for 23a) or near exclusive ($>20: 1$ for $3,4 \mathrm{a}, 5,23 \mathrm{~b}$, and 26) endo diastereoselectivity. In contrast to the endo-specific cycloaddition reactions of the preceding dienes, the reactions of 35 and 36 with trans 1,2 -disubstituted dienophiles (23c, 24, 25) and a cis 1,2 -disubstituted vinyl ether possessing a large C 2 substituent ($\mathrm{Ph}, 4 \mathrm{c}$) proceed predominantly (2.2-5:1) but not exclusively through an endo transition state. The modest endo diastereoselectivity of the reaction of the N-phenylsulfonyl diene 35 with (E)-1-ethoxypropene proved comparable to the results obtained with the N-methylsulfonyl diene 36 (2.2:1), highlighting the observation that the cycloaddition diastereoselectivity has proven independent of the size of the N-sulfonyl substituent. Consistent with expectations, the endo diastereoselectivity decreases with increasing reaction temperature and increases with increasing reaction pressure. From a comparison of the thermal and high pressure (13 kbar) results for the preparation of 43 (endo versus exo), the estimate for the $\Delta \Delta V^{*}$ (endo versus exo transition state) derived from the Drude-Nernst equation is $-4 \mathrm{~cm}^{3} / \mathrm{mol}\left(25^{\circ} \mathrm{C}\right)$. The [$4+2$] cycloaddition reactions were found to exhibit little solvent dependency on the cycloaddition rate ($k_{\text {rel }}(35)$: $\mathrm{CH}_{3} \mathrm{CN}(0.9), \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1), $\mathrm{C}_{6} \mathrm{H}_{6}$ (1) for ethyl vinyl ether) ${ }^{33}$ and were found to proceed with full preservation of the dienophile olefin geometry in the stereochemistry of the reaction products. Further characteristic of a concerted Diels-Alder reaction, trans 1,2 -disubstituted dienophiles were found to react more rapidly than cis 1,2 -disubstituted dienophiles with $35(k(E) / k(Z)=13.4$ (1 atm) for 1-ethoxypropene). ${ }^{34}$ Most impressively, the noncomplementary C 4 ad dition of an electron-withdrawing group to the N-(phenyl-sulfonyl)-1-aza-1,3-butadiene was found to substantially accelerate the rate of $[4+2$] cycloaddition $[k(35) / k(1 \mathrm{~h}$ or 1 i$)>20]$, eqs

[^8]Table VII. C2-H2 Coupling Constants ($\left.\mathrm{Hz}, \mathrm{CDCl}_{3}, 50 \mathrm{~Hz}\right)^{20}$

$\mathbf{8}$	161	$\mathbf{2 7 b}$	159	39-endo	164
$\mathbf{9}$	164	$\mathbf{2 8 a}$	159	40-endo	166
$\mathbf{1 1 a}$	159	$\mathbf{2 8 b}$	158	41-endo	144
$\mathbf{1 1 b}$	166	$\mathbf{2 9 a}$	141	42-endo	162
$\mathbf{1 2}$	151	$\mathbf{2 9 b}$	144	43-endo	162
21a	159	$\mathbf{3 0 a}$	157	43-exo	164
21b	159	$\mathbf{3 2}$	154	45-endo	166
21c	159	$\mathbf{3 3}$	160	47-endo	142
22a	163	$\mathbf{3 7 a}$-endo	164	48-endo	137
22b	163	$\mathbf{3 7 b}$-endo	159		
$\mathbf{2 2 c}$	162	$\mathbf{3 8 b}$-endo	164		

5 and $6 .{ }^{35}$ As such, the dienes 35 and 36 were found to be sufficiently reactive to participate in intermolecular [$4+2$] cy-

cloaddition reactions with a full range of dienophiles, including ketene acetals, substituted vinyl ethers, (E) - and (Z)-2-benzyloxy vinyl acetate, and the relatively unreactive alkenes 23 (k. (23b) $/ k(\mathbf{2 3 a})>20)$) (Scheme VI). Notably, even the styrenes provide a single cycloaddition regioisomer in which the inherent regioselectivity of the [$4+2$] cycloaddition reaction is unaltered by the diene C4 ethoxycarbonyl group and the room-temperature, endo-specific reaction of $\mathbf{2 3 b}$ ($\mathbf{2 3 b}>2 \mathbf{2 3 a}$) is consistent with the diene participation in a LUMO ${ }_{\text {diene }}$-controlled Diels-Alder reaction. Remarkably, under pressure-promoted reaction conditions ($21^{\circ} \mathrm{C}, 13.3 \mathrm{kbar}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 6$ days), diene 35 proved sufficiently reactive to undergo [$4+2$] cycloaddition with the unactivated dienophile, 1 -octene, to provide a single cycloaddition regioisomer derived through the compact endo transition state albeit in modest conversion $(18 \%, 49) .{ }^{29}$ Thus, the studies demonstrate that the noncomplementary C 4 addition of an electron-withdrawing group $\left(-\mathrm{CO}_{2} \mathrm{Et}\right)$ to the electron-deficient 1 -azadienes accelerates their 4π participation in $\mathrm{LUMO}_{\text {diene }}$-controlled [$4+2$] cycloaddition reactions, maintains the [$4+2$] cycloaddition regioselectivity and endo diastereoselectivity of the parent N-sulfonyl-1-aza-1,3-butadienes, and that the [$4+2$] cycloaddition reactions display characteristics consistent with concerted $\mathrm{LUMO}_{\text {diene }}$-controlled [$4+2$] cycloaddition reactions.

Applications of the [$4+2$] cycloaddition reactions of N -sulfonyl-1-aza-1,3-butadienes are in progress, and the results of such studies will be reported in due course. ${ }^{38}$

Experimental Section ${ }^{36}$

General Procedures for the Preparation of α, β-Unsaturated \boldsymbol{N}-(Phenylsulfonyl)imines. Method A: 1-(1-Cyclohexenyl)-1-((phenylsulfonyl)-

[^9]iminolethane (1d). A solution of 1-acetylcyclohexene oxime ($2.00 \mathrm{~g}, 14.4$ mmol) in carbon tetrachloride ($100 \mathrm{~mL}, 0.14 \mathrm{M}$) cooled to $0^{\circ} \mathrm{C}$ under nitrogen was treated sequentially with triethylamine $(1.75 \mathrm{~g}, 2.40 \mathrm{~mL}$, $17.3 \mathrm{mmol}, 1.2$ equiv) and benzenesulfinyl chloride ($2.54 \mathrm{~g}, 1.95 \mathrm{~mL}, 15.8$ mmol, 1.1 equiv), and the resulting reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 15 min . The triethylamine hydrochloride was removed by filtration, and the filtrate was stirred at $25^{\circ} \mathrm{C}$ for 12 h under nitrogen. The intermediate O-phenylsulfinyl oximes were observed by TLC and were found to have a slightly higher \boldsymbol{R}_{f} value than the α, β-unsaturated N (phenylsulfonyl)imines. The reaction mixture was washed with water (2 $\times 100 \mathrm{~mL}$), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. Moisture-sensitive imines were not washed with water. Flash chromatography ($\mathrm{SiO}_{2}, 5 \mathrm{~cm} \times 13 \mathrm{~cm}, 10 \% \mathrm{EtOAc} /$ hexane eluant) afforded pure $1 \mathrm{~d}(2.60 \mathrm{~g}, 3.79 \mathrm{~g}$ theoretical, 69%) as a pale yellow oil.

Method B: (E)-3-Phenyl-1-[(phenylsulfonyl)imino $)$-2-propene (1h). A solution of cinnamaldehyde ($2.00 \mathrm{~g}, 15.1 \mathrm{mmol}$) in toluene (150 mL) was treated with benzenesulfonamide ($2.62 \mathrm{~g}, 16.6 \mathrm{mmol}, 1.1$ equiv) and $\mathrm{MgSO}_{4}(2 \mathrm{~g} / \mathrm{mmol}, 30.0 \mathrm{~g})$, and the reaction mixture was stirred at reflux for 120 h . The reaction mixture was cooled to room temperature, the MgSO_{4} was removed by filtration, and the filtrate was concentrated in vacuo. Flash chromatography $\left(\mathrm{SiO}_{2}, 6 \mathrm{~cm} \times 13 \mathrm{~cm}, 15 \% \mathrm{EtOAc} /\right.$ hexane eluant) afforded $1 \mathrm{~h}(2.05 \mathrm{~g}, 4.10 \mathrm{~g}$ theoretical, $50 \%)$ as a pale yellow solid.

Method C: 2-Methyl-1-[(phenylsulfonyl)imino]-2-propene (1i). A solution of methacrolein ($2.00 \mathrm{~g}, 28.5 \mathrm{mmol}$) in dichloromethane (150 mL) was cooled to $0^{\circ} \mathrm{C}$ under nitrogen and treated with triethylamine ($8.65 \mathrm{~g}, 11.9 \mathrm{~mL}, 85.5 \mathrm{mmol}, 3.0$ equiv) and benzenesulfonamide (4.48 $\mathrm{g}, 28.5 \mathrm{mmol}, 1.0$ equiv). Titanium tetrachloride ($2.97 \mathrm{~g}, 15.7 \mathrm{mmol}$, 0.55 equiv) was added dropwise to the reaction solution, and the mixture was stirred for an additional 30 min at $0^{\circ} \mathrm{C}$. The titanium salts were removed by filtration of the reaction mixture through Celite. The Celite pad was washed with dichloromethane (150 mL), and the combined filtrates were concentrated in vacuo to provide the reactive (phenylsulfonyl) imine 1 i . Rapid purification $\left(\mathrm{SiO}_{2}, 6 \mathrm{~cm} \times 10 \mathrm{~cm}, 15 \% \mathrm{Et}-\right.$ $\mathrm{OAc} /$ hexane eluant) afforded $1 \mathrm{i}(3.32 \mathrm{~g}, 5.96 \mathrm{~g}$ theoretical, $56 \%)$ as a clear oil that was used immediately in subsequent reactions.

General Procedure for the $[4+2]$ Cycloaddition Reactions of α, β Unsaturated N-(Phenylsulfonyl) imines. Pressure-Promoted [4+2] Cycloaddition, 1-(1-Cyclohexenyl)-1-[(phenylsulfonyl)imino]ethane (1d, $208 \mathrm{mg}, 0.790 \mathrm{mmol}$) was placed in a Teflon tube sealed with a brass clamp at one end and treated with a solution of ethyl vinyl ether (285

[^10]$\mathrm{mg}, 3.95 \mathrm{mmol}, 5.0$ equiv) in dichloromethane (0.79 mL). The mixture was purged with nitrogen and sealed with a brass clamp with the exclusion of air/nitrogen. The reaction vessel was placed in a pressure reactor (13 kbar) at $25^{\circ} \mathrm{C}$ for 87 h . After depressurization, the reaction mixture was transferred to a round-bottom flask and concentrated in vacuo. Flash chromatography (Florisil, 100-200 mesh, $2 \mathrm{~cm} \times 18 \mathrm{~cm}, 5 \%$ EtOAc/ hexane eluant) afforded pure 2d ($235 \mathrm{mg}, 265 \mathrm{mg}$ theoretical, 89%) as a pale yellow solid.

Thermal Cycloaddition. A solution of $\mathbf{1 d}(0.40 \mathrm{~g}, 1.5 \mathrm{mmol})$ in mesitylene ($3.0 \mathrm{M}, 0.48 \mathrm{~mL}$) was placed in a Kontes vial and treated with ethyl vinyl ether ($0.54 \mathrm{~g}, 7.5 \mathrm{mmol}, 0.72 \mathrm{~mL}, 5.0$ equiv $)$. The reaction vessel was purged with nitrogen, sealed, and placed in an oil bath (115 ${ }^{\circ} \mathrm{C}$) for 48 h . The cooled reaction mixture was transferred to a roundbottom flask and concentrated in vacuo. Flash chromatography (Florisil, 100-200 mesh, $2 \mathrm{~cm} \times 13 \mathrm{~cm}, 5 \% \mathrm{EtOAc} /$ hexane eluant) afforded 2d $(0.40 \mathrm{~g}, 0.50 \mathrm{~g}$ theoretical, 80%) as a pale yellow solid.

1-(1-Cyclohexenyl)-1-[(diphenylphosphinyl)imino]ethane (1c): ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}, \mathrm{ppm}\right) 7.93(4 \mathrm{H}, \mathrm{m}), 7.38(6 \mathrm{H}, \mathrm{m}), 6.80(1$ $\mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{C}), 2.60\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.50(2 \mathrm{H}, \mathrm{m}), 2.25(2 \mathrm{H}, \mathrm{m}), 1.66$ $(4 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}, \mathrm{ppm}\right) 182.0,140.8,140.4,139.3$, $136.0,134.3,131.5,131.0,128.2,128.1,26.4,24.6,22.3,21.4,21.2 ;$ IR (neat) $\nu_{\max } 3056,2930,1616,1438,1276,1248,1200,1120,998,860$, $796,724,696 \mathrm{~cm}^{-1}$; EIMS m / e (relative intensity) $323\left(43, \mathrm{M}^{+}\right), 246$ (13), 216 (21), 201 (base), 157 (18), 122 (68), 77 (89); CIMS (2methylpropane) m / e (relative intensity) $324\left(\mathrm{M}+\mathrm{H}^{+}\right.$, base); EIHRMS $m / e 323.1439\left(\mathrm{C}_{20} \mathrm{H}_{22}\right.$ NOP requires 323.1439).

1-(1-Cyclohexenyl)-1-[(phenylsulfonyl)imino]ethane (1d): mp 56-59 ${ }^{\circ} \mathrm{C}$ (EtOAc/hexane) ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}, \mathrm{ppm}\right) 7.99(2 \mathrm{H}, \mathrm{d}$, $J=8 \mathrm{~Hz}), 7.50(3 \mathrm{H}, \mathrm{m}), 6.90(1 \mathrm{H}, \mathrm{t}, J=4 \mathrm{~Hz}, \mathrm{C}=\mathrm{CH}), 2.66(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CH}_{3}\right), 2.25(2 \mathrm{H}, \mathrm{m}), 2.15(2 \mathrm{H}, \mathrm{m}), 1.50(4 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $75 \mathrm{MHz}, \mathrm{ppm}) 180.0$ (e), 142.4 (o), 141.7 (e), 138.7 (e), 132.0 (o), 128.4 (o), 126.3 (o), 26.5 (e), 23.8 (e), 21.6 (e), 20.4 (e), 18.8 (o); IR (neat) $\nu_{\max } 3064,2936,2862,1626,1566,1480,1448,1384,1306,1254,1152$, 1090, 1024, $994,952,860 \mathrm{~cm}^{-1}$; EIMS m / e (relative intensity) $263(2$, M^{+}), $157(10), 141$ (13), 122 (33), 109 (13), $93(16), 81(31), 79(28)$, 77 (base), 67 (25), 55 (20), 51 (39); CIMS (2-methylpropane) m/e (relative intensity) $264\left(\mathrm{M}+\mathrm{H}^{+}\right.$, base); EIHRMS $m / e 263.0980$ $\left(\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{2} \mathrm{~S}\right.$ requires 263.0980). Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{2} \mathrm{~S}: \mathrm{C}$, $63.85 ; \mathrm{H}, 6.51 ; \mathrm{N}, 5.32, \mathrm{~S}, 12.18$. Found: C, 63.46; H, 6.22; N, 5.16; S, 12.29.

2-[(Phenylsulfonyl)iminol-3-butene (1e): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{MHz}\right.$, ppm) $8.04(2 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}), 7.05(3 \mathrm{H}, \mathrm{m}), 6.03(1 \mathrm{H}, \mathrm{dd}, J=18,10$ $\mathrm{Hz}, \mathrm{CH}=\mathrm{C}), 5.53\left(1 \mathrm{H}, \mathrm{d}, J=18 \mathrm{~Hz}, \mathrm{CH}_{4} \mathrm{H}_{\mathrm{c}}=\mathrm{C}\right), 5.23(1 \mathrm{H}, \mathrm{d}, J=$ $\left.10 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{t}} \mathrm{H}_{\mathrm{c}}=\mathrm{C}\right), 1.73\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 75 \mathrm{MHz}\right.$, ppm) 179.1, $142.3,138.6,132.6,128.9,128.3,128.0,127.7,127.3,19.0$; IR (neat) $\nu_{\text {max }} 3064,2926,1622,1576,1448,1308,1154,1090,1022$, $846,730,688 \mathrm{~cm}^{-1}$; ElMS m/e (relative intensity) $209\left(14, \mathrm{M}^{+}\right), 141$ (52), 125 (11), 77 (base), 51 (22); CIMS (2-methylpropane) m / e (relative intensity) $210\left(\mathrm{M}+\mathrm{H}^{+}\right.$, base); CIHRMS $\mathrm{m} / \mathrm{e} 210.0588$ $\left(\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}_{2} \mathrm{~S}\right.$ requireis 210.0588).
(E)-4-Phenyl-2-[(phenylsulfonyl)imino]-3-butene (1f): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{MHz}, \mathrm{ppm}\right) 8.20(2 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}), 6.96(8 \mathrm{H}, \mathrm{m}), 6.89$ $(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}, \mathrm{C}=\mathrm{CH}), 6.45(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}, \mathrm{C}=\mathrm{CH}), 2.73$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}, 75 \mathrm{MHz}, \mathrm{ppm}\right) 179.0$ (e), 145.8 (o), 143.7 (o), 142.9 (e), 135.0 (e), 132.6 (o), 130.8 (o), 129.6 (o), 129.3 (o), 129.2 (0), $129.0(\mathrm{o}), 128.6(0), 127.6(0), 123.3(0), 20.3(0) ;$ IR (neat) $\nu_{\max } 3062,1624,1560,1448,1372,1306,1210,1152,1090,1026,970$, $884,740,688,656,636 \mathrm{~cm}^{-1}$; CIMS (2-methylpropane) m / e (relative intensity) $286\left(\mathrm{M}+\mathrm{H}^{+}, 41\right), 158$ (base); EIHRMS $m / e 285.0820$ $\left(\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{2} \mathrm{~S}\right.$ requires 285.0822).
(E)-1,3-Diphenyl-1-[(phenylsulfonyl)imino]-2-propene (1g): 'H NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{MHz}, \mathrm{ppm}\right) 8.05(2 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}), 7.61(6 \mathrm{H}, \mathrm{m}), 7.50$ $(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}, \mathrm{C}=\mathrm{CH}), 7.43(4 \mathrm{H}, \mathrm{m}), 7.26(3 \mathrm{H}, \mathrm{m}), 7.06(1 \mathrm{H}$, $\mathrm{d}, J=16 \mathrm{~Hz}, \mathrm{CH}=\mathrm{C}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}, 75 \mathrm{MHz}, \mathrm{ppm}\right) 177.3,148.5$, $142.8,134.7,132.4,131.7,130.9,130.4,130.2,130.1,129.2,129.0,128.8$, $128.7,128.6,128.4,128.3,128.1,123.1,102.3$; IR (neat) $\nu_{\max } 3050,1616$, 1578, 1540, 1448, 1320, 1152, 1086, 860, 810, 754, 688, $654 \mathrm{~cm}^{-1} ;$ CIMS (2-methylpropane) $m / e 348\left(\mathrm{M}+\mathrm{H}^{+}\right.$, base); CIHRMS m/e 348.1058 $\left(\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{NO}_{2} \mathrm{~S}\right.$ requires 348.1058).
(E)-3-Phenyl-1-[(phenylsulfonyl)iminol-2-propene (1h): mp 107-109 ${ }^{\circ} \mathrm{C}$ (EtOAc/hexane) ; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{MHz}$, ppm) $8.80(1 \mathrm{H}$, d, $J=9 \mathrm{~Hz}, \mathrm{CH}=\mathrm{N}), 7.95(2 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}), 7.40-7.70(9 \mathrm{H}, \mathrm{m}), 7.00$ ($1 \mathrm{H}, \mathrm{dd}, J=16,9 \mathrm{~Hz}, \mathrm{CH}=\mathrm{C}$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 75 \mathrm{MHz}, \mathrm{ppm}\right)$ 171.1, 153.1, 133.1, 131.3, 129.1, 128.8, 128.4, 128.3, 128.0, 127.7, 124.8; $1 R$ (neat) $\nu_{\text {max }} 3062,1618,1580,1448,1318,1260,1156,1088,1012$, $966,858,784,752,724,686,632 \mathrm{~cm}^{-1}$; EIMS m/e (relative intensity) 270 (4), 206 (16), 141 (68), 130 (39), 129 (base), 125 (43), 102 (29), 77 (53), 64 (11), 51 (30), 50 (23), 48 (23), 39 (28), 38 (15); CIMS (2-methylpropane) m / e (relative intensity) $272\left(\mathrm{M}+\mathrm{H}^{+}, 1\right), 259$ (11),

186 (10), 143 (8), 130 (base); CIHRMS $m / e 272.0745\left(\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO}_{2} \mathrm{~S}\right.$ requires 272.0745). Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO}_{2} \mathrm{~S}: \mathrm{C}, 66.40 ; \mathrm{H}, 4.83$; N, 5.16; S, 11.82. Found: C, 66.03; H, 4.94; N, 5.12; S, 11.83

2-Methyl-1-[(phenylsulfonyl) ${ }^{\text {minol }}$ - 2 -propene (1i), ${ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$, $300 \mathrm{MHz}, \mathrm{ppm}) 8.60(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{N}), 7.98(2 \mathrm{H}, \mathrm{dd}, J=8,1 \mathrm{~Hz})$, 6.88-7.16 ($3 \mathrm{H}, \mathrm{m}$), $5.22(1 \mathrm{H}, \mathrm{s}, \mathrm{CH} H=\mathrm{C}), 5.06(1 \mathrm{H}, \mathrm{s}, \mathrm{CHH}=\mathrm{C})$, $1.52\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}, 75 \mathrm{MHz}, \mathrm{ppm}\right)$ 171.9, 135.3, 132.8 , 128.8, 127.5, 15.5; IR (neat) $\nu_{\text {max }} 3066,2924,1624,1578,1448,1328$ 1308, 1160, 1090, 1026, 810, 754, 726, 688; EIMS m / e (relative intensity) $209\left(2, \mathrm{M}^{+}\right), 157$ (12), 141 (21), 93 (11), 77 (base), 51 (21); CIMS (2-methylpropane) m / e (relative intensity) $210\left(\mathrm{M}+\mathrm{H}^{+}\right.$, base); EIHRMS $m / e 209.0510\left(\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}_{2} \mathrm{~S}\right.$ requires 209.0510)

2-Oxo-3-[1-phenyl-1-[(phenylsulfonyl)iminolmethyl|-2H-1-benzopyran (1j): mp 189-193 ${ }^{\circ} \mathrm{C}$ (EtOAc/hexane); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$ ppm) $8.10(2 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}), 7.90(3 \mathrm{H}, \mathrm{m}), 7.65-7.50(6 \mathrm{H}, \mathrm{m})$ 7.43-7.33 ($4 \mathrm{H}, \mathrm{m}$); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}, \mathrm{ppm}\right) 157.6$ (e), 154.2 (o), 142.6 (o), 135.0 (o), I34.4 (o), 133.2 (o), 133.0 (o), 129.8 (o), 128.9 (o), 127.6 (o), 125.0 (o), 124.6 (o), 117.9 (e), 117.0 (o); IR (neat) $\nu_{\text {max }}$ 3062, 1726, 1608, 1588, 1560, 1490, 1448, 1366, 1320, 1266, 1244, 1158 , 1122, 1088, 1020, 926, $834 \mathrm{~cm}^{-1}$; EIMS m / e (relative intensity) 389 (17 M^{+}), 248 (base), 89 (30), 77 (93), 63 (8), 51 (21); CIMS (2-methylpropane) m / e (relative intensity) $390\left(\mathrm{M}+\mathrm{H}^{+}\right.$, base); EIHRMS m / e $389.0721\left(\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{NO}_{4} \mathrm{~S}\right.$ requires 389.0721$)$. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{NO}_{4} \mathrm{~S}: \mathrm{C}, 67.85 ; \mathrm{H}, 3.88 ; \mathrm{N}, 3.60 ; \mathrm{S}, 8.23$. Found: C, 67.90; H , 3.77; N, 3.66; S, 8.12.
(3S *,4a R^{*})-3-Ethoxy-1-methyl-2-(diphenylphosphinyl)-2,3,4,4a,5,6,7,8-octahydroisoquinoline (2c): ${ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{MHz}$, ppm) $8.10(2 \mathrm{H}, \mathrm{m}), 7.95(2 \mathrm{H}, \mathrm{m}), 7.05(6 \mathrm{H}, \mathrm{m}), 4.66(1 \mathrm{H}, \mathrm{dd}, J=$ $8,2 \mathrm{~Hz}, \mathrm{C} 3-\mathrm{H}), 4.11\left(1 \mathrm{H}, \mathrm{dq}, J=10,7 \mathrm{~Hz}, \mathrm{OCHHCH}_{3}\right), 3.43(1 \mathrm{H}$ $\left.\mathrm{dq}, J=10,7 \mathrm{~Hz}, \mathrm{OCH} H \mathrm{CH}_{3}\right), 2.44\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C} 4-\mathrm{H}_{\mathrm{ax}}\right), 2.01(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right), 1.80-1.45(6 \mathrm{H}, \mathrm{m}), 1.40-1.20(4 \mathrm{H}, \mathrm{m}), 1.11(3 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}$, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}, 75 \mathrm{MHz}, \mathrm{ppm}\right) 136.8$ (e), 135.1 (e), 133.4 (0), 133.3 (0), 133.1 (0), 132.4 (o), 132.3 (0), 129.6 (o), 129.5 (o), 129.2 (e), 129.1 (o), 128.9 (o), 128.8 (e), 123.0 (e), 84.2 (o), 63.8 (e), 37.6 (e), 35.1 (o), 31.1 (e), 29.0 (e), 28.7 (e), 19.7 (o), 16.2 (o); IR (neat) $\nu_{\text {max }}$ 3058, 2930, 2858, 2362, 1728, 1438, 1386, 1288, 1210, 1168, 1120, 1058, $996,750,724,698,678 \mathrm{~cm}^{-1}$; EIMS m / e (relative intensity) 349 (26), 201 (14), 148 (54), 84 (base), 77 (50), 55 (31), 49 (52); CIMS (2methylpropane) m / e (relative intensity) $396\left(\mathrm{M}+\mathrm{H}^{+}, 1\right), 350$ (base); EIHRMS m/e $395.2006\left(\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{NO}_{2} \mathrm{P}\right.$ requires 395.2014).
($3 S^{*}, 4 \mathrm{a} R^{*}$)-3-Ethoxy-1-methyl-2-(phenyIsulfonyl)-2,3,4,4a,5,6,7,8octahydroisoquinoline (2d): mp $62-64^{\circ} \mathrm{C}$ (EtOAc/hexane); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{MHz}, \mathrm{ppm}\right) 7.70(2 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}), 7.50(3 \mathrm{H}, \mathrm{m}), 5.20$ ($1 \mathrm{H}, \mathrm{t}, J=3 \mathrm{~Hz}, \mathrm{C} 3-\mathrm{H}$), $3.65\left(1 \mathrm{H}, \mathrm{dq}, J=10,7 \mathrm{~Hz}, \mathrm{OCH} H \mathrm{CH}_{3}\right.$), $3.45(1 \mathrm{H}, \mathrm{dq}, J=10,7 \mathrm{~Hz}, \mathrm{OCHHCH} 3$), $2.63(1 \mathrm{H}, \mathrm{dd}, J=12,2 \mathrm{~Hz}$, $\left.\mathrm{C} 4-\mathrm{H}_{\mathrm{ax}}\right), 2.14\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C}=\mathrm{CCH}_{3}\right), 1.70(2 \mathrm{H}, \mathrm{m}), 1.60(2 \mathrm{H}, \mathrm{m}), 1.40$ $(2 \mathrm{H}, \mathrm{m}), 1.20(2 \mathrm{H}, \mathrm{m}), 1.14\left(3 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 75 \mathrm{MHz}, \mathrm{ppm}\right) 140.4$ (e), 132.2 (o), 130.4 (e), 129.1 (o), 128.6 (0), 121.0 (e), 84.2 (o), 63.2 (e), 36.7 (e), 33.8 (o), 32.7 (e), 30.7 (e), 27.5 (e), 27.2 (e), 19.3 (o), 15.2 (o); IR (neat) $\nu_{\text {max }} 2930,2856,1446$, 1346, 1256, 1236, 1198, 1172, 1154, 1110, 1080, 1054, 986, 964, 924 $860 \mathrm{~cm}^{-1}$; EIMS m/e (relative intensity) $335\left(4, \mathrm{M}^{+}\right), 194$ (8), 148 (base), 172 (2), 107 (14), 81 (22), 79 (22), 77 (66), 51 (8); CIMS (2-methylpropane) m / e (relative intensity) $336\left(\mathrm{M}+\mathrm{H}^{+}, 2\right.$), 290 (base) EIHRMS $m / e \quad 335.1555\left(\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{~S}\right.$ requires 335.1555$)$. Anal Calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{~S}: \mathrm{C}, 64.44 ; \mathrm{H}, 7.53 ; \mathrm{N}, 4.18$. Found: C, 64.46; H, 7.82; N, 4.33.
(3S *,4a R^{*})-3-(Benzyloxy)-1-methyl-2-(phenylsulfonyl)-2,3,4,4a,5,6,7,8-octahydroisoquinoline (2e): ${ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{MHz}$, $\mathrm{ppm}) 7.62(2 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}), 7.26(2 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}), 7.06-7.18$ (3 H, m) , 6.89-6.99 ($3 \mathrm{H}, \mathrm{m}$), $5.37(1 \mathrm{H}, \mathrm{m} . \mathrm{C} 4-\mathrm{H}), 4.73$ ($1 \mathrm{H}, \mathrm{d}, J=12$ $\mathrm{Hz}, \mathrm{OCHHPh}), 4.50(1 \mathrm{H}, \mathrm{d}, J=12 \mathrm{~Hz}, \mathrm{OCH} H \mathrm{Ph}), 2.48(1 \mathrm{H}, \mathrm{m})$, $2.20\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.80(1 \mathrm{H}, \mathrm{m}), 1.50(2 \mathrm{H}, \mathrm{m}), 1.23(6 \mathrm{H}, \mathrm{m}), 1.25$ ($1 \mathrm{H}, \mathrm{m}$); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}, 75 \mathrm{MHz}, \mathrm{ppm}$) 140.3 (e), 139.1 (e), 132.1 (o), 130.4 (e), 128.8 (o), 127.7 (o), 127.5 (o), 121.3 (o), 84.2 (o), 69.7 (e), 36.8 (e), 33.7 (o), 32.6 (e), 30.8 (e), 27.5 (e), 19.6 (o); IR (neat) $\nu_{\text {max }}$ 2930, 2854, 1654, 1446, 1348, 1258, 1198, 1172, 1076, 1050, 966, 720, $690 \mathrm{~cm}^{-1}$; EIMS m/e (relative intensity) 397 (1, M ${ }^{+}$), 148 (28), 91 (base), 77 (33), 65 (9), 51 (9): CIMS (2 -methylpropane) m / e (relative intensity) $398\left(\mathrm{M}^{+} \mathrm{H}^{+}, 2\right), 290$ (base); ClHRMS m/e 398.1789 $\left(\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{~S}\right.$ requires 398.1789). Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{~S}: \mathrm{C}$, $69.48 ; \mathrm{H}, 6.86 ; \mathrm{N}, 3.52$. Found: C, 69.44; H, 6.98; N, 3.44.
($3 S^{*}, 4 S^{*}, 4 \mathrm{~A} R^{*}$)-3-(Benzyloxy)-1,4-dimethyl-2-(phenylsulfonyl)-2,3,4,4a,5,6,7,8-octahydroisoquinoline (2f): $\mathrm{mp} 104-107^{\circ} \mathrm{C}$ (EtOAc/ hexane) ; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{MHz}, \mathrm{ppm}\right) 7.85(2 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}$), 7.30 $(2 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}), 7.00-7.20(3 \mathrm{H}, \mathrm{m}), 6.88-6.96(3 \mathrm{H}, \mathrm{m}), 5.45(1 \mathrm{H}$, $\mathrm{d}, J=3 \mathrm{~Hz}, \mathrm{C} 3-\mathrm{H}), 4.67(1 \mathrm{H}, \mathrm{d}, J=12 \mathrm{~Hz}, 0 \mathrm{OH} H \mathrm{Ph}), 4.55(1 \mathrm{H}$, d, $J=12 \mathrm{~Hz}, \mathrm{OC} H \mathrm{HPh}$), $2.30\left(1 \mathrm{H}\right.$, ddd, $\left.J=14,4.5,4.0 \mathrm{~Hz}, \mathrm{C} 4-\mathrm{H}_{\mathrm{ax}}\right)$, $2.04\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.80(1 \mathrm{H}, \mathrm{ddq}, J=7,4.5,3 \mathrm{~Hz}), 1.0-1.7(8 \mathrm{H}, \mathrm{m})$, $0.95\left(3 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}, \mathrm{C} 4-\mathrm{CH}_{3}\right):{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}, 75 \mathrm{MHz}, \mathrm{ppm}\right)$
142.9 (e), 138.9 (e), 132.0 (o), 128.7 (o), 128.3 (o), 128.0 (o), 127.8 (o), 127.7 (o), , 127.6 (e), 122.4 (e), 90.5 (o), 70.3 (e), 41.6 (o), 40.6 (o), 32.8 (e), 28.8 (e), 26.1 (e), 25.7 (e), 18.7 (o), 17.6 (o); IR (neat) $\nu_{\text {max }} 2930$, $2854,1728,1498,1448,1348,1260,1172,1026,802,750,718,692 \mathrm{~cm}^{-1}$; EIMS m / e (relative intensity) 411 ($1, \mathrm{M}^{+}$), 288 (6), 162 (28), 120 (5), 108 (2), 107 (11), 91 (base), 79 (14), 77 (21); CIMS (2-methylpropane) m / e (relative intensity) 304 (base, $\mathrm{M}+\mathrm{H}^{+}-\mathrm{PhCH}_{2} \mathrm{OH}$); CIHRMS $m / e 412.1938\left(\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{~S}\right.$ requires 412.1946)
($3 S^{*}, 4 \mathrm{a} R^{*}$)-3-Methoxy-1-methyl-4-methylene-2-(phenylsulfonyl) 2,3,4,4a,5,6,7,8-octahydroisoquinoline (2g): $\mathrm{mp} 96-99{ }^{\circ} \mathrm{C}$ (EtOAc/ hexane); ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{MHz}, \mathrm{ppm}\right) 7.62(2 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz})$, $6.80-7.00(3 \mathrm{H}, \mathrm{m}), 5.42(1 \mathrm{H}, \mathrm{s}, \mathrm{C} 3-\mathrm{H}), 4.55(1 \mathrm{H}, \mathrm{s}, \mathrm{CHH}=\mathrm{C}), 4.35$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{CH} H=\mathrm{C}), 3.30\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 2.43(1 \mathrm{H}, \mathrm{dd}, J=12,1.3 \mathrm{~Hz}$, $\left.\mathrm{C} 4-\mathrm{H}_{\mathrm{ax}}\right), 2.25\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.90-\mathrm{I} .60(2 \mathrm{H}, \mathrm{m}), 1.50-1.30(2 \mathrm{H}, \mathrm{m})$ $1.20-1.00(2 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 75 \mathrm{MHz}, \mathrm{ppm}\right) 144.4$ (e), 139.6 (e), 132.5 (o), 128.7 (o), 128.3 (o), 122.0 (e), 113.5 (e), 91.1 (o), 55.5 (o), 42.3 (o), 38.0 (e), 30.3 (e), 27.1 (e), 27.0 (e), 19.6 (e); IR (neat) $\nu_{\text {max }}$ 2932, 2856, 1446, 1348, 1198, 1170, 1144, 1094, 1070, 1042, 984, 950 $914,750,724,690,662 \mathrm{~cm}^{-1} ;$ EIMS m / e (relative intensity) $333\left(8, \mathrm{M}^{+}\right)$, 318 (5), 302 (6), 160 (47), 151 (38), 141 (11), 119 (17), 105 (11), 93 (14), 91 (46), 77 (base), 57 (52), 51 (39); CIMS (2-methylpropane) m/e (relative intensity) $334\left(\mathrm{M}+\mathrm{H}^{+}, 7\right) 302$ (base); EIHRMS m/e 333.1400 $\left(\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{~S}\right.$ requires 333.1398). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{~S}: \mathrm{C}$ 64.83; H, 6.97; N, 4.20. Found: C, 65.20; H, 6.97; N, 4.26.
($3 S^{*}, 3 R^{*}, 4 \mathrm{a} R^{*}$)-3-Methoxy-1,3-dimethyl-2-(phenylsulfonyI)$\mathbf{2 , 3 , 4 , 4 a}, \mathbf{5}, \mathbf{6}, \mathbf{7}, \mathbf{8}$-octahydrolsoquinoline (2h): mp $104-106^{\circ} \mathrm{C}$ (EtOAc/ hexane); ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{MHz}, \mathrm{ppm}\right) 7.90(2 \mathrm{H}, \mathrm{m}), 6.93$ (3 H m), $3.09\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 3-\mathrm{OCH}_{3}\right.$), $2.50\left(1 \mathrm{H}, \mathrm{dd}, J=13,1 \mathrm{~Hz}, \mathrm{C} 4-\mathrm{H}_{\mathrm{ax}}\right), 2.33$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Cl}-\mathrm{CH}_{3}\right), \mathrm{l} .50(6 \mathrm{H}, \mathrm{m}), 1.29\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 3-\mathrm{CH}_{3}\right), \mathrm{I} .20(2 \mathrm{H}, \mathrm{m})$; ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}, 75 \mathrm{MHz}, \mathrm{ppm}\right) 142.4$ (e), 132.4 (e), 131.9 (o), 131.9 (e), 128.5 (o), 127.6 (0), 127.2 (o), 50.2 (o), 39.5 (e), 35.7 (o), 35.3 (e), 30.4 (e), 27.1 (e), 26.7 (e), 22.8 (o), 21.6 (o); IR (neat) $\nu_{\text {max }} 2928,1448$, 1348, 1158, 988, $690 \mathrm{~cm}^{-1}$; EIMS m / e (relative intensity) $335\left(1, \mathrm{M}^{+}\right)$, 194 (41) 162 (27), 136 (18), 77 (36), 73 (base), 72 (63); CIMS (2methylpropane) m / e (relative intensity) $336\left(\mathrm{M}+\mathrm{H}^{+}, 2\right.$), 304 (base); EIHRMS m/e $335.1557\left(\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{~S}\right.$ requires 335.1554$)$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{~S}: \mathrm{C}, 64.44 ; \mathrm{H}, 7.53 ; \mathrm{N}, 4.18$. Found: C, 64.38; H, 7.61; N, 4.17
(4a R^{*})-3,3-Dimethoxy-1-methyl-2-(phenylsulfonyl)-2,3,4,4a,5,6,7,8octahydroisoquinoline (2i): ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{MHz}, \mathrm{ppm}\right) 7.95$ (2 $\mathrm{H}, \mathrm{m}), 7.03(3 \mathrm{H}, \mathrm{m}), 2.84\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 2.83\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 2.52$ ($\left.1 \mathrm{H}, \mathrm{d}, J=12 \mathrm{~Hz}, \mathrm{C} 4-\mathrm{H}_{\mathrm{ax}}\right), 2.30(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{CCH} 3), 2.03(2 \mathrm{H}, \mathrm{m})$, $1.60(4 \mathrm{H}, \mathrm{m}), 1.20(2 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}, 75 \mathrm{MHz}, \mathrm{ppm}\right) 132.3$ (e), 131.4 (o), 128.3, 128.1, 127.9, 123.3, 48.5 (o), 48.1 (o), 36.5 (o), 35.3 (e), 34.5 (e), 30.3 (e), 27.3 (e), 26.6 (e), 26.5 (e), 20.2 (o); IR (neat) $\nu_{\text {max }}$ 2928, 2854, 1448, 1324, 1152, 1118, 1050, 690, $660 \mathrm{~cm}^{-1}$; EIMS m/e (relative intensity) $351\left(2, \mathrm{M}^{+}\right), 210$ (18), 196 (11), 179 (16), 178 (base), 136 (22), 91 (10), 88 (80), 77 (57), 56 (19), 51 (23); CIMS (2methylpropane) m / e (relative intensity) $352\left(\mathrm{M}+\mathrm{H}^{+}, 1\right), 178$ (base); CIHRMS m/e $352.1582\left(\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{4} \mathrm{~S}\right.$ requires 352.1528$)$
(2S*)-2-Ethoxy-6-methyl-1-(phenylsulfonyl)-1,2,3,4-tetrahydro pyridine (8): $\mathrm{mp} 58-61^{\circ} \mathrm{C}(\mathrm{EtOAc})$; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{MHz}$, ppm) $7.69(2 \mathrm{H}, \mathrm{d}, J=7), 7.01(3 \mathrm{H}, \mathrm{m}), 5.50(1 \mathrm{H}, \mathrm{dd}, J=2.8,1.3 \mathrm{~Hz}$ $\mathrm{CHOCH}_{2} \mathrm{CH}_{3}$), 4.81 ($1 \mathrm{H}, \mathrm{dd}, J=4.6,2.5 \mathrm{~Hz}, \mathrm{C}=\mathrm{CH}$), $3.85(1 \mathrm{H}, \mathrm{dq}$ $\left.J=10.5,7 \mathrm{~Hz}, \mathrm{OC} H \mathrm{HCH}_{3}\right), 3.60(1 \mathrm{H}, \mathrm{dq}, J=10.5,7 \mathrm{~Hz}$, $\mathrm{OCH} H \mathrm{CH}_{3}$), $2.20\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.07$ (dddd, $J=16,7,2.5,2 \mathrm{~Hz}$, C $4-\mathrm{H}_{\mathrm{eq}}$), $1.55\left(1 \mathrm{H}\right.$, dddd, $J=13,7,2,1.3 \mathrm{~Hz}, \mathrm{C} 3-\mathrm{H}_{\mathrm{eq}}$), $1.40(1 \mathrm{H}$, dddd, $\left.J=16,7,2.5,2 \mathrm{~Hz}, \mathrm{C} 4-\mathrm{H}_{2 \mathrm{x}}\right), 1.10\left(3 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 0.91$ (1 H, dddd, $J=13,3,7,2.8 \mathrm{~Hz}, \mathrm{C} 3-\mathrm{H}_{\mathrm{ax}}$); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}, 75 \mathrm{MHz}$, ppm) 132.3 (o), 129.0 (e), 128.0 (o), 127.7 (o), 127.2 (e), 127.1 (0), 114.0 (o), 84.0 (o), 63.2 (e), 25.6 (e), 23.9 (o), 18.6 (e), 15.2 (o), IR (neat) $\nu_{\max } 2974,2932,1664,1480,1446,1386,1348,1310,1248,1190$ $1168,1120,1100,1062,1016,968,928,848,802,758,732,690,604$ cm^{-1}; ElMS m / e (relative intensity) 281 (8, M ${ }^{+}$), 236 (12), 140 (26), 94 (base), 77 (59), 51 (21); CIMS (2-methylpropane) m / e (relative intensity) $282\left(\mathrm{M}+\mathrm{H}^{+}, 3\right.$), 236 (base); EIHRMS m/e 281.1088 $\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{7} \mathrm{~S}\right.$ requires 281.1085). Anal. Caled for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{~S}$: C, 59.76; H, 6.81; N, 4.98; S, 11.40. Found: C, 60.06 ; H, 6.74; N, 4.87; S, 11.02
(2S*,4R*)-2-Ethoxy-6-methyl-4-phenyl-1-(phenylsulfonyl)-1,2,3,4 tetrahydropyridine (9): $\mathrm{mp} 96-98^{\circ} \mathrm{C}$ (EtOAc/hexane): 'H NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{MHz}, \mathrm{ppm}\right) 7.70(2 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}), 7.10(8 \mathrm{H}, \mathrm{m}), 5.48$ ($1 \mathrm{H}, \mathrm{dd}, J=4,2.3 \mathrm{~Hz}, \mathrm{C} 2-\mathrm{H}$), $5.20(1 \mathrm{H}, \mathrm{d}, J=1.3 \mathrm{~Hz}, \mathrm{C} 5-\mathrm{H}$), 3.75 ($1 \mathrm{H}, \mathrm{dq}, J=10,7 \mathrm{~Hz}, \mathrm{OCH} H \mathrm{CH}_{3}$), $3.43(1 \mathrm{H}, \mathrm{dq}, J=10,7 \mathrm{~Hz}$, $\mathrm{OC} H \mathrm{HCH}_{3}$), $2.50\left(1 \mathrm{H}, \mathrm{ddd}, J=8.6,4.0,1.3, \mathrm{C}_{2}-\mathrm{H}_{\mathrm{eq}}\right), 2.24(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}=\mathrm{CCH}_{3}\right), 1.85\left(1 \mathrm{H}, \mathrm{ddd}, J=14.3,4.0,2.3 \mathrm{~Hz}, \mathrm{C} 3-\mathrm{H}_{\mathrm{eq}}\right), 1.69(1$ $\left.\mathrm{H}, \operatorname{ddd}, J=14.3,8.6,4.0 \mathrm{~Hz}, \mathrm{C} 3-\mathrm{H}_{\mathrm{ax}}\right), 1.00(3 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}$ $\mathrm{OCH}_{2} \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}, 75 \mathrm{MHz}, \mathrm{ppm}\right) 145.5$ (e), 140.9 (e), 132.4 (0), 132.0 (e), 129.0 (o), 128.3 (o), 127.9 (0), 127.6 (e), 127.2 (o), 126.4 (o), 121.0 (o), 84.3 (o), 63.3 (e), 36.4 (o), 36.3 (e), 23.5 (o), 15.0 (o);

IR (neat) $\nu_{\max } 2929,1652,1443,1346,1167,1109,1050,1024,952,758$, $732 \mathrm{~cm}^{-1}$; EIMS m / e (relative intensity) $357\left(1, \mathrm{M}^{+}\right), 312(2), 216$ (6), 170 (base), 144 (18), 143 (10), 129 (31), 128 (10), 103 (14), 91 (13), 77 (90), 5I (20); CIMS (2-methylpropane) m / e (relative intensity) 358 ($\mathrm{M}+\mathrm{H}^{+}, 1$), 312 (base); ElHRMS m/e $357.1401\left(\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{~S}\right.$ requires 357.1398). Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{~S}: \mathrm{C}, 67.77 ; \mathrm{H}, 6.23 ; \mathrm{N}$, 3.72. Found: C, $67.37 ; \mathrm{H}, 6.22 ; \mathrm{N}, 3.93$.

The structure of 9 was unambiguously established in a single-crystal X-ray structure determination. ${ }^{21 a}$
($2 S^{*}, 4 R^{*}$)-2-Ethoxy-4,6-diphenyl-1-(phenylsulfonyI)-1,2,3,4-tetrahydropyridine (10): ${ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{MHz}$, ppm) $7.70(2 \mathrm{H}, \mathrm{d}, J$ $=7 \mathrm{~Hz}), 7.60(2 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}), 7.20(5 \mathrm{H}, \mathrm{m}), 6.90(6 \mathrm{H}, \mathrm{m}), 5.85$ ($1 \mathrm{H}, \mathrm{d}, J=3.2 \mathrm{~Hz}, \mathrm{C}=\mathrm{CH}$), $5.67(1 \mathrm{H}, \mathrm{dd}, J=5.8,4 \mathrm{~Hz}$, $\left.\mathrm{CHOCH}_{2} \mathrm{CH}_{3}\right), 4.13\left(1 \mathrm{H}, \mathrm{dq}, J=10,7 \mathrm{~Hz}, \mathrm{OCH} \mathrm{HCH}_{3}\right), 3.66(1 \mathrm{H}$, $\left.\mathrm{dq}, J=10,7 \mathrm{~Hz}, \mathrm{OCH} H \mathrm{CH}_{3}\right), 2.40\left(1 \mathrm{H}, \mathrm{dd}, J=7.6,7.4 \mathrm{~Hz}, \mathrm{C} 4-\mathrm{H}_{\mathrm{eq}}\right)$, $2.06\left(1 \mathrm{H}\right.$, ddd, $\left.J=14,7.4,5.8 \mathrm{~Hz}, \mathrm{C} 3-\mathrm{H}_{\mathrm{eq}}\right), 1.95(1 \mathrm{H}, J=14,7.6,4$ $\left.\mathrm{Hz}, \mathrm{C} 3-\mathrm{H}_{\mathrm{ax}}\right), 1.12\left(3 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{C} \mathrm{H}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 75\right.$ $\mathrm{MHz}, \mathrm{ppm}) 145.5,138.5,133.3,129.7,129.6,129.4,129.2,129.1,129.0$, $128.9,128.5,127.9,127.5,121.2,119.3,86.0,64.8,40.5,38.5,15.1 ;$ IR (neat) $\nu_{\max } 2974,1684,1654,1596,1560,1542,1492,1446,1356,1170$, 1060, $954,762,738,690 \mathrm{~cm}^{-1}$; EIMS m / e (relative intensity) 278 (7), 232 (49), 231 (base), 230 (91), 202 (15), 154 (13), 129 (17), 102 (18), 77 (69), 51 (39); CIMS (2-methylpropane) $m / e 420\left(\mathrm{M}+\mathrm{H}^{+}, 6\right), 232$ (base); CIHRMS m/e $420.1625\left(\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{~S}\right.$ requires 420.1633$)$.
($2 S^{*}, 4 R^{*}$)-2-Ethoxy-4-phenyl-1- (phenylsulfonyl) $\mathbf{1 , 2 , 3 , 4 - t e t r a h y d r o - ~}$ pyridine (11a): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{MHz}, \mathrm{ppm}\right) 7.73(2 \mathrm{H}, \mathrm{d}, J=7$ $\mathrm{Hz}), 7.10(7 \mathrm{H}, \mathrm{m}), 6.83(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{C} 6-\mathrm{H}), 5.24(1 \mathrm{H}, \mathrm{m}$, C2-H), $5.04(1 \mathrm{H}, J=8.4,4.7 \mathrm{~Hz}, \mathrm{C} 5-\mathrm{H}), 3.56(1 \mathrm{H}, \mathrm{dq}, J=9.4,7 \mathrm{~Hz}$, $\left.\mathrm{OCH} \mathrm{HCH}_{3}\right), 3.15\left(1 \mathrm{H}, \mathrm{dq}, J=9.4,7 \mathrm{~Hz}, \mathrm{OCH} H \mathrm{CH}_{3}\right), 2.88(1 \mathrm{H}, \mathrm{dd}$, $\left.J=8,2.5 \mathrm{~Hz}, \mathrm{C} 4-\mathrm{H}_{\mathrm{eq}}\right), 1.90\left(1 \mathrm{H}, \mathrm{dd}, J=14,2.5 \mathrm{~Hz}, \mathrm{C} 3-\mathrm{H}_{\mathrm{eq}}\right), 1.30$ (1 H, ddd, $\left.J=14,8,3 \mathrm{~Hz}, \mathrm{C} 3-\mathrm{H}_{\mathrm{ax}}\right), 0.76\left(3 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}, 75 \mathrm{MHz}, \mathrm{ppm}\right) 144.5$ (e), 132.4 (o), 129.1 (o), 129.0 (o), 128.1 (e), 128.0 (o), 127.9 (o), 127.7 (o), 127.5 (o), 127.2 (o), 126.1 (o), 123.9 (o), 114.9 (o), 112.1 (o), 81.9 (o), 63.0 (e), 34.8 (o), 33.8 (e), 14.6 (o); IR (neat) $\nu_{\text {max }} 2976,1654,1560,1542,1490,1448,1398,1352$, 1252, 1170, 1108, 1060, 1024, 920, 758, 730, $690 \mathrm{~cm}^{-1}$; EIMS m / e (relative intensity) $343\left(13, \mathrm{M}^{+}\right), 297$ (32), 156 (44), 130 (23), 129 (22), 115 (13), 103 (19), 91 (23), 77 (base), 72 (25), 69 (17), 51 (42); CIMS (2-methylpropane) $m / e 344\left(\mathrm{M}+\mathrm{H}^{+}, 1\right), 298$ (base); EIHRMS m / e $343.1167\left(\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{~S}\right.$ requires 343.1163$)$.
(2R*,3S*,4R *)-2-(Benzyloxy)-3-methyl-4-phenyl-1-(phenylsulfonyl) $\mathbf{- 1 , 2 , 3 , 4 - t e t r a h y d r o p y r i d i n e ~ (1 1 b) : ~}{ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{MHz}$, $\mathrm{ppm}) 7.68(2 \mathrm{H}, \mathrm{d}, J=7 \cdot \mathrm{~Hz}), 7.10(10 \mathrm{H}, \mathrm{m}), 6.90(3 \mathrm{H}, \mathrm{m}), 6.85(1$ $\mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}, \mathrm{C} 6-\mathrm{H}), 5.25(1 \mathrm{H}, \mathrm{d}, J=2.3 \mathrm{~Hz}, \mathrm{C} 2-\mathrm{H}), 5.16(1 \mathrm{H}$, $\mathrm{dd}, J=8.1,4.5 \mathrm{~Hz}, \mathrm{C} 5-\mathrm{H}), 4.92(1 \mathrm{H}, \mathrm{d}, J=12.3 \mathrm{~Hz}, \mathrm{OCH} \mathrm{HPh}), 4.66$ $(1 \mathrm{H}, \mathrm{d}, J=12.3 \mathrm{~Hz}$, OCH $H \mathrm{Ph}), 2.66(1 \mathrm{H}, \mathrm{dd}, J=7.7,4.5 \mathrm{~Hz}$, $\left.\mathrm{C} 4-\mathrm{H}_{\mathrm{eq}}\right), 1.38\left(1 \mathrm{H}, \mathrm{ddq}, J=7.7,7,2.3 \mathrm{~Hz}, \mathrm{C} 3-\mathrm{H}_{\mathrm{ax}}\right), 0.64(3 \mathrm{H}, \mathrm{d}, J$ $\left.=7 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}, 75 \mathrm{MHz}, \mathrm{ppm}\right) 132.6,131.6,129.3$, 128.4, 128.3, $128.1,127.6,127.2,126.8,123.0,115.2,86.2,70.4,41.8$, $36.8,15.7$; IR (neat) $\nu_{\text {max }} 2930,1654,1560,1492,1448,1370,1348$, 1172, 1136, 1092, 1064, 1012, 904, 732, 700, $672 \mathrm{~cm}^{-1}$; EIMS m/e (relative intensity) $419\left(1, \mathrm{M}^{+}\right), 296(25), 91$ (base); CIMS (2methylpropane) m / e (relative intensity) $420\left(\mathrm{M}+\mathrm{H}^{+}, 1\right), 312$ (base); ElHRMS $m / e 419.1548\left(\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{~S}\right.$ requires 419.1555$)$.
(2S*)-2-Ethoxy-5-methyl-1-(phenylsulfonyl)-1,2,3,4-tetrahydropyridine (12): $\operatorname{mp} 56-58{ }^{\circ} \mathrm{C}$ (EtOAc/hexane); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}, 300$ $\mathrm{MHz}, \mathrm{ppm}) 7.70(2 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}), 6.88(3 \mathrm{H}, \mathrm{m}), 6.57(1 \mathrm{H}, \mathrm{s}$, $\mathrm{C}=\mathrm{CH}), 5.24\left(1 \mathrm{H}, \mathrm{dd}, J=2.8,1.1 \mathrm{~Hz}, \mathrm{CHOCH}_{2} \mathrm{CH}_{3}\right), 4.00(1 \mathrm{H}, \mathrm{dq}$, $\left.J=10,7 \mathrm{~Hz}, \mathrm{OCH} \mathrm{HCH}_{3}\right), 3.70\left(1 \mathrm{H}, \mathrm{dq}, J=10,7 \mathrm{~Hz}, \mathrm{OCH} \mathrm{HCH}_{3}\right)$, $2.10\left(1 \mathrm{H}\right.$, ddd, $\left.J=15.6,13,6 \mathrm{~Hz}, \mathrm{C} 4-\mathrm{H}_{\mathrm{eq}}\right), 1.60(1 \mathrm{H}$, dddd, $J=13$, $\left.\left.6,2,1.1 \mathrm{~Hz}, \mathrm{C} 3-\mathrm{H}_{\mathrm{eq}}\right), 1.34(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{CCH})_{3}\right), 1.20(1 \mathrm{H}$, ddd, $J=$ $\left.15.6,6,2 \mathrm{~Hz}, \mathrm{C} 4-\mathrm{H}_{\mathrm{ax}}\right), 1.10\left(3 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 0.70(1 \mathrm{H}$, dddd, $\left.J=13,13,6,2.8 \mathrm{~Hz}, \mathrm{C} 3-\mathrm{H}_{\mathrm{ax}}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}, 75 \mathrm{MHz}, \mathrm{ppm}\right)$ 140.2 (e), 132.3 (o), 129.0 (o), 128.3 (o), 127.7 (o), 127.1 (o), 119.4 (e), 117.1 (o), 81.1 (o), 63.2 (e), 25.9 (e), 22.3 (e), 20.8 (o), 15.9 (o); IR (neat) $\nu_{\text {max }} 2928,1684,1654,1560,1352,1164,1102,1070,938,838$, $722,690,634 \mathrm{~cm}^{-1}$; EIMS m/e (relative intensity) 281 ($8, \mathrm{M}^{+}$), 236 (12), 140 (26), 94 (base), 82 (21), 77 (59); CIMS (2-methylpropane) $m / e 282$ $\left(\mathrm{M}+\mathrm{H}^{+}, 3\right)$; ElHRMS $m / e 281.1085\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{~S}\right.$ requires 281.1085). Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{~S}: \mathrm{C}, 59.76 ; \mathrm{H}, 6.81 ; \mathrm{N}, 4.98$; S, 11.40. Found: C, 59.54; H, 6.63; N, 4.87; S, 11.11.
($6 S^{*}$)-2-0xo-2H-1-benzopyran $[3,4-c]$-6-ethoxy-2-phenyl-1-(phenyl-sulfonyl)-1,4,5,6-tetrahydropyridine (13): mp $132-135^{\circ} \mathrm{C}$ (EtOAc/ hexane); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}, \mathrm{ppm}\right) 7.40(2 \mathrm{H}, \mathrm{m}), 7.25(2 \mathrm{H}$, $\mathrm{m}), 7.03(4 \mathrm{H}, \mathrm{m}), 5.86(6 \mathrm{H}, \mathrm{m}), 5.88(1 \mathrm{H}, \mathrm{dd}, J=5.2 .4 .2 \mathrm{~Hz}$, $\left.\mathrm{CHOCH}_{2} \mathrm{CH}_{3}\right), 3.38\left(1 \mathrm{H}, \mathrm{dq}, J=9,7 \mathrm{~Hz}, \mathrm{OCH} \mathrm{HCH}_{3}\right), 3.25(1 \mathrm{H}, \mathrm{dd}$, $J=8,6 \mathrm{~Hz}, \mathrm{C} 4-\mathrm{H}), 3.15\left(1 \mathrm{H}, \mathrm{dq}, J=9,7 \mathrm{~Hz}, \mathrm{OCH} \mathrm{HCH}_{3}\right), 2.30(1$ H, ddd, $J=14,6,5.2 \mathrm{~Hz}, \mathrm{C} 5-\mathrm{H}), 2.11(1 \mathrm{H}, \mathrm{ddd}, J=14,8,4.2 \mathrm{~Hz}$, C5-H), $0.84\left(3 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}, 75 \mathrm{MHz}$, ppm) 159.1, $150.7,149.3,141.1,135.0,132.4,131.8,129.0,128.5,128.3$,
128.1, 128.0, 127.8, 127.7, 127.5, 127.1, 126.6, 123.6, 123.4, 116.9, 84.1, 64.1, 38.1, 32.6, 14.7; IR (neat) $\nu_{\max } 3061,2977,1726,1606,1478,1447$, $1365,1321,1267,1245,1159,1139,1088,789,756,725,689,651,600$ cm^{-1}; CIMS (2-methylpropane) m / e (relative intensity) $462\left(\mathrm{M}+\mathrm{H}^{+}\right.$, 13), 274 (base); CIHRMS m/e $462.1371\left(\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{NO}_{5} \mathrm{~S}\right.$ requires 462.1375).

2-Oxo-2H-1-benzopyran[3,4-c]-6,6-dimethoxy-2-phenyl-1-(phenyl-sulfonyl)-1,4,5,6-tetrahydropyridine (14): ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$, ppm) $7.69(2 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}), 7.50(2 \mathrm{H}, \mathrm{m}), 7.16(3 \mathrm{H}, \mathrm{m}), 6.90(6 \mathrm{H}$, $\mathrm{m}), 6.69(1 \mathrm{H}, \mathrm{m}), 3.75(1 \mathrm{H}, \mathrm{dd}, J=11,8 \mathrm{~Hz}, \mathrm{C} 4-\mathrm{H}), 2.93(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 2.89\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 2.62(1 \mathrm{H}, \mathrm{dd}, J=12,11 \mathrm{~Hz}, \mathrm{C} 5 \cdot \mathrm{H}), 2.31$ ($1 \mathrm{H}, \mathrm{dd}, J=12,8 \mathrm{~Hz}, \mathrm{C} 5-\mathrm{H}$); IR (neat) $\nu_{\max } 2926,1750,1618,1490$, $1456,1360,1210,1172,1116,1062,1040,974,888,756,688 \mathrm{~cm}^{-1}$; EIMS m / e (relative intensity) 404 (2), 390 (5), 248 (50), 89 (29), 77 (base); CIMS (2-methylpropane) m / e (relative intensity) $478\left(\mathrm{M}+\mathrm{H}^{+}\right.$, 2), 250 (base); CIHRMS m/e $478.1314 \quad\left(\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{NO}_{6} \mathrm{~S}\right.$ requires 478.1324).
[2-(Ethoxycarbonyl)-2-[(2-tetrahydropyranyloxy)imino]ethyl]triphenylphosphonium Bromide (15). Hydroxylamine hydrochloride (3.48 $\mathrm{g}, 50.0 \mathrm{mmol}$) was added to a stirred solution of ethyl bromopyruvate ($9.76 \mathrm{~g}, 50.0 \mathrm{mmol}$) in anhydrous chloroform (150 mL) and anhydrous methanol (100 mL) at $23^{\circ} \mathrm{C}$. The reaction mixture was stirred at 23 ${ }^{\circ} \mathrm{C}$ for 18 h and concentrated under reduced pressure. The residue was dissolved in dichloromethane (300 mL), washed with 5% aqueous hydrochloric acid and saturated aqueous sodium chloride, dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), filtered, and concentrated in vacuo. Recrystallization afforded ethyl 2-(hydroxyimino)-3-bromopropanoate ($9.66 \mathrm{~g}, 10.5 \mathrm{~g}$ theoretical, 92%) as a white solid: $\mathrm{mp} 75-77^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane $)$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200\right.$ $\mathrm{MHz}, \mathrm{ppm}) 4.38\left(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.27\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Br}\right)$, $1.39\left(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}, \mathrm{ppm}\right)$ $161.9(\mathrm{C}=\mathrm{O}), 147.9(\mathrm{C}=\mathrm{N}), 62.5\left(\mathrm{OCH}_{2}\right), 14.9\left(\mathrm{CH}_{2} \mathrm{Br}\right), 13.8\left(\mathrm{CH}_{3}\right)$; $I R$ (neat) $\nu_{\max } 3182,2996,1736,1604,1406,1318,1236,1200,1122$, $1032,860 \mathrm{~cm}^{-1}$; EIMS m / e (relative intensity) $209 / 211\left(3 / 3, \mathrm{M}^{+}\right)$, 181/183 (18/18), 129 (21), 101 (base); CIMS (2-methylpropane) m / e (relative intensity) 210/212 (M+ H ${ }^{+}$, base); ElHR MS $m / e 208.9688$ $\left(\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{BrNO}_{3}\right.$ requires 208.9688).

A stirred solution of the oxime ($9.12 \mathrm{~g}, 43.4 \mathrm{mmol}$) in anhydrous dichloromethane (225 mL) was treated with 3,4-dihydro- $2 H$-pyran (5.11 $\mathrm{g}, 60.7 \mathrm{mmol}, 1.4$ equiv). A catalytic amount of pyridinium p-toluenesulfonate ($820 \mathrm{mg}, 3.25 \mathrm{mmol}, 0.075$ equiv) was added, and the mixture was stirred under nitrogen at $23^{\circ} \mathrm{C}$ for 21 h . The reaction mixture was diluted with diethyl ether (100 mL) and washed with half-saturated aqueous sodium chloride (50 mL). The organic layer was dried ($\mathrm{Na}_{2}-$ SO_{4}). filtered, and concentrated in vacuo. Flash chromatography (SiO_{2}, $5 \mathrm{~cm} \times 25 \mathrm{~cm}, 12 \%$ ethyl acetate/hexane eluant) afforded ethyl $2-[(2-$ tetrahydropyranyloxy) iminol-3-bromopropanoate ($12.0 \mathrm{~g}, 12.8 \mathrm{~g}$ theoretical, 94%) as a pale yellow oil: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}, \mathrm{ppm}\right)$ $5.57(1 \mathrm{H}$, apparent $\mathrm{t}, J=2.1 \mathrm{~Hz}, \mathrm{OCHO}), 4.40(2 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}$, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), $4.27\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Br}\right), 3.91(1 \mathrm{H}, \mathrm{m}, \mathrm{OCHHCH} 2), 3.72(1$ $\left.\mathrm{H}, \mathrm{m}, \mathrm{OCH} \mathrm{HCH}_{2}\right), 1.88\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2} \mathrm{CH}_{2}\right), 1.66(4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.34\left(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50\right.$ $\mathrm{MHz}, \mathrm{ppm}) 161.9(\mathrm{C}=\mathrm{O}), 148.6(\mathrm{C}=\mathrm{N}), 102.1(\mathrm{OCHO}), 62.2\left(\mathrm{CO}_{2}-\right.$ $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 62.0\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 28.0\left(\mathrm{CH}_{2} \mathrm{Br}\right), 24.6\left(\mathrm{O}_{2} \mathrm{CHCH} 2\right), 18.3$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 15.9\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 13.7\left(\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$; IR (neat) $\nu_{\text {max }}$ 2948, 1722, 1374, 1334, 1206, 1188, 1118, 1040, 1020, 986, 964, 900 , $866 \mathrm{~cm}^{-1}$; CIMS (2-methylpropane) m / e (relative intensity) $294 / 296$ (M $+\mathrm{H}^{+}, 21 / 20$), $250(9), 216$ (14), 85 (base); CIHRMS m/e 294.0338 $\left(\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{BrNO}_{4}\right.$ requires 294.0341).

Triphenylphosphine ($5.62 \mathrm{~g}, 21.4 \mathrm{mmol}$) was added to a solution of the oxime THP ether ($6.29 \mathrm{~g}, 21.4 \mathrm{mmol}$) in anhydrous tetrahydrofuran $(60 \mathrm{~mL})$ and anhydrous benzene (30 mL), and the reaction mixture was warmed at $80^{\circ} \mathrm{C}$ under nitrogen for 18 h . The reaction mixture was allowed to cool to $23^{\circ} \mathrm{C}$ and further cooled to $0^{\circ} \mathrm{C}$ with an ice-water bath. The precipitate was collected by filtration and washed with diethyl ether ($2 \times 70 \mathrm{~mL}$). The remaining solid was dried in vacuo to afford $15\left(10.9 \mathrm{~g}, 11.9 \mathrm{~g}\right.$ theoretical, 91%) as a white solid: $\mathrm{mp} 164-165^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}, \mathrm{ppm}\right) 7.64-7.96(15 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 5.46$ (1 H , apparent $\mathrm{t}, J=15.2 \mathrm{~Hz}, \mathrm{CH} H \mathrm{P}), 5.30(1 \mathrm{H}$, apparent $\mathrm{t}, J=2.2 \mathrm{~Hz}$, $\mathrm{OCHO}), 5.24(1 \mathrm{H}$, apparent $\mathrm{t}, J=15.0 \mathrm{~Hz}, \mathrm{CHHP}), 4.07(2 \mathrm{H}, \mathrm{q}, J$ $\left.=7.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.72\left(1 \mathrm{H}, \mathrm{m}, \mathrm{OCH} \mathrm{HCH}_{2}\right), 3.54(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{OCHHCH}_{2}\right), 1.64\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2} \mathrm{CH}_{2}\right), 1.49\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.11$ ($3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$); 1R (neat) $\nu_{\max } 2956,1706,1586,1436$, $1376,1332,1250,1208,1110,1052,1038,982,956,894,850 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{BrNO}_{4} \mathrm{P}: \mathrm{C}, 60.43 ; \mathrm{H}, 5.63 ; \mathrm{Br}, 14.36 ; \mathrm{N}, 2.52$; $\mathrm{P}, 5.57$. Found: $\mathrm{C}, 60.14 ; \mathrm{H}, 5.86 ; \mathrm{Br}, 14.01 ; \mathrm{N}, 2.42 ; \mathrm{P}, 5.32$.

General Procedure for the Wittig Reaction of $\mathbf{1 5}$ with Aldehydes: Ethyl (E)-4-Phenyl-2-1(2-tetrahydropyranyloxy)imino]-3-butenoate (17a). A stirred suspension of $15(4.40 \mathrm{~g}, 7.91 \mathrm{mmol}, 1.0$ equiv) in anhydrous N, N-dimethylformamide (16 mL) was treated with anhydrous potassium carbonate ($1.20 \mathrm{~g}, 8.68 \mathrm{mmol}, 1.1$ equiv). The slurry was stirred under
nitrogen for 5 min at $23^{\circ} \mathrm{C}$ and was treated with benzaldehyde $(840 \mathrm{mg}$, $7.91 \mathrm{mmol}, 1.0$ equiv). The reaction mixture was stirred at $23^{\circ} \mathrm{C}$ for 27 h . The mixture was diluted with water (50 mL) and extracted with ether ($5 \times 50 \mathrm{~mL}$), and the combined extracts were washed with water $(2 \times 100 \mathrm{~mL})$ and saturated aqueous sodium chloride $(1 \times 100 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. Flash chromatography ($\mathrm{SiO}_{2}, 5 \mathrm{~cm} \times 13 \mathrm{~cm}, 10-15 \%$ ethyl acetate/hexane gradient elution) afforded $3 \mathrm{a}\left(2.25 \mathrm{~g}, 2.40 \mathrm{~g}\right.$ theoretical, 94%) as a yellow, viscous oil. ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}, \mathrm{ppm}\right) 7.61(1 \mathrm{H}, \mathrm{d}, J=16.5 \mathrm{~Hz}, \mathrm{CH}=)$, $7.36-7.52(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.28(1 \mathrm{H}, \mathrm{d}, J=16.7 \mathrm{~Hz},=\mathrm{CH}), 5.52(1$ H , apparent $\mathrm{t}, J=3.3 \mathrm{~Hz}, \mathrm{OCHO}), 4.40(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.90(1 \mathrm{H}, \mathrm{m}, \mathrm{OCHHCH} 2), 3.69(1 \mathrm{H}, \mathrm{m}, \mathrm{OCHHCH}$) $1.89\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2}\right), 1.61\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.36(3 \mathrm{H}, \mathrm{t}, J=7.2$ $\left.\mathrm{Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}, \mathrm{ppm}\right) 163.5(\mathrm{C}=\mathrm{O})$, $149.3(\mathrm{C}=\mathrm{N}), 140.4(\mathrm{CH}=), 136.4$ (C aromatic), $129.6(\mathrm{CH}$ aromatic) $128.9(\mathrm{CH}$ aromatic), $127.7(\mathrm{CH}$ aromatic), $113.9(=\mathrm{CH}), 102.0(\mathrm{OC}$. $\mathrm{HO}), 62.8\left(\mathrm{COCH}_{2} \mathrm{CH}_{3}\right), 61.8\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 28.5\left(\mathrm{O}_{2} \mathrm{CHCH}_{2}\right), 24.8$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 19.3\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 13.9\left(\mathrm{CH}_{3}\right)$; IR (neat) $\nu_{\text {max }} 2946$, 2872, 1722, 1448, 1356, 1320, 1262, 1206, 1176, 1154, 1130, 1118, 1102, $1076,1064,1042,1020,956,904,874 \mathrm{~cm}^{-1}$; EIMS m / e (relative in tensity) 219 (7), 129 (3), 85 (base), 77 (3), 67 (9), 57 (13); CIMS (2-methylpropane) m / e (relative intensity) $304\left(\mathrm{M}+\mathrm{H}^{+}\right.$, base), 220 (65), 85 (8); ClHRMS $m / e 304.1546\left(\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{4}\right.$ requires 304.1548) Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{4}: \mathrm{C}, 67.30 ; \mathrm{H}, 6.99 ; \mathrm{N}, 4.62$. Found: C , 67.65; H, 7.27; N, 4.98.

Ethyl (E)-2-[(2-tetrahydropyranyloxy)imino)-3-decenoate (17b): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}, \mathrm{ppm}\right) 6.66(1 \mathrm{H}, \mathrm{dt}, J=16.2,6.5 \mathrm{~Hz},=\mathrm{CH})$, $6.65(1 \mathrm{H}, \mathrm{d}, J=16.2 \mathrm{~Hz}, \mathrm{CH}=)$, $5.44(1 \mathrm{H}$, apparent $\mathrm{t}, J=3.7 \mathrm{~Hz}$, $\mathrm{OCHO}), 4.31\left(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.84(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{OCH} \mathrm{HCH}_{2}\right), 3.63\left(1 \mathrm{H}, \mathrm{m}, \mathrm{OCH} H \mathrm{CH}_{2}\right), 2.22(2 \mathrm{H}$, apparent $\mathrm{q}, J=$ $\left.6.5 \mathrm{~Hz}=\mathrm{CHCH}_{2}\right), 1.84\left(2 \mathrm{H}, \mathrm{m}, \mathrm{O}_{2} \mathrm{CHCH}_{2}\right), 1.56\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, $1.35\left(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.39-1.28\left(8 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{4}\right), 0.89$ ($3 \mathrm{H}, \mathrm{t}, J=6.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}$); IR (neat) $\nu_{\text {max }} 2932,2858,1722,1370$ 1320, i204, 1184, 1116, 1042, 1020, 952, $904 \mathrm{~cm}^{-1}$; CIMS (2-methylpropane) m / e (relative intensity) $312\left(\mathrm{M}+\mathrm{H}^{+}, 9\right), 228$ (base), 85 (44); EIHRMS $m / e 311.2096\left(\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{NO}_{4}\right.$ requires 311.2097$)$.

Ethyl (E)-2-[(2-tetrahydropyranyloxy)iminol-3-pentenoate (17c): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}, \mathrm{ppm}\right) 6.64(1 \mathrm{H}, \mathrm{dq}, J=16.1,5.5 \mathrm{~Hz}$, $\left.=\mathrm{CHCH}_{3}\right), 6.51(1 \mathrm{H}, \mathrm{d}, J=16.2 \mathrm{~Hz}, \mathrm{CH}=), 5.37(1 \mathrm{H}$, apparent t $J=3.7 \mathrm{~Hz}, \mathrm{OCHO}), 4.24\left(2 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.81(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{OCH} \mathrm{HCH}_{2}\right), 3.61\left(1 \mathrm{H}, \mathrm{m}, \mathrm{OCH} H \mathrm{CH}_{2}\right), 1.85(3 \mathrm{H}, \mathrm{d}, J=5.2 \mathrm{~Hz}$, $\left.=\mathrm{CHCH}_{3}\right), 1.78\left(2 \mathrm{H}, \mathrm{m}, \mathrm{O}_{2} \mathrm{CHCH}_{2}\right), 1.57\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.29$ ($3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$); IR (neat) $\nu_{\text {max }} 2946,2872,1722,1444$, 1372, 1206, 1180, 1116, 1042, 1020, 958, $904 \mathrm{~cm}^{-1}$; CIMS (2-methyl propane) m / e (relative intensity) $242\left(\mathrm{M}+\mathrm{H}^{+}, 22\right), 158$ (base), 132 (23), 85 (51); CIHRMS $m / e 242.1406\left(\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{NO}_{4}\right.$ requires 242.1392),

General Procedure for the Deprotection of Oxime Tetrahydropyranyl Ethers: Ethyl (E)-2-(Hydroxyimino)-4-phenyl-3-butenoate (18a). A solution of $17 \mathrm{a}(1.29 \mathrm{~g}, 4.25 \mathrm{mmol}, 0.07 \mathrm{M})$ in glacial acetic acid/ water/tetrahydrofuran ($3: 1: 1,60 \mathrm{~mL}$) was warmed at $55^{\circ} \mathrm{C}$ for 37 h . The cooled reaction mixture was diluted with water (100 mL) and extracted with ethyl acetate ($3 \times 100 \mathrm{~mL}$). The combined extracts were washed with saturated aqueous sodium bicarbonate $(3 \times 100 \mathrm{~mL})$, water ($2 \times 100 \mathrm{~mL}$), and saturated aqueous sodium chloride $(1 \times 100 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. Flash chromatography ($\mathrm{SiO}_{2}, 3 \mathrm{~cm} \times 10 \mathrm{~cm}, 5-10 \%$ ethyl acetate/hexane gradient elution) afforded $18 \mathrm{a}(0.76 \mathrm{~g}, 0.93 \mathrm{~g}$ theoretical, 82%) as a white solid: $\mathrm{mp} 87-90$ ${ }^{\circ} \mathrm{C}$ (EtOAc/hexane); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}, \mathrm{ppm}\right), 9.98(1 \mathrm{H}, \mathrm{br}$ $\mathrm{s}, \mathrm{NOH}), 7.85(1 \mathrm{H}, \mathrm{d}, J=16.8 \mathrm{~Hz}, \mathrm{CH}=)$, $7.56(2 \mathrm{H}, \mathrm{dd}, J=7.8,1.7$ $\mathrm{Hz}, 0-\mathrm{ArH}), 7.36(3 \mathrm{H}, \mathrm{m}, m, p-\mathrm{ArH}), 7.27(1 \mathrm{H}, \mathrm{d}, J=16.7 \mathrm{~Hz},=\mathrm{CH})$, $4.40\left(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.42(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}, \mathrm{ppm}\right) 163.2(\mathrm{C}=\mathrm{O}), 146.8$ $(\mathrm{C}=\mathrm{N}), 140.7(=\mathrm{CH}), 136.5(\mathrm{C}$ aromatic), $129.6(\mathrm{CH}$ aromatic), 128.9 $\left(\mathrm{CH}\right.$ aromatic), $127.7(\mathrm{CH}$ aromatic $), 113.2(=\mathrm{CH}), 61.8\left(\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{C}-\right.$ H_{3}), $31.8\left(\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$; IR (neat) $\nu_{\max } 3408,2980,1732,1448,1420$, 1384, 1312, 1262, 1172, 1024, 1002, $976 \mathrm{~cm}^{-1}$; ElMS m/e (relative intensity) $219\left(\mathrm{M}^{+}, 27\right), 218(51), 202(7), 128$ (base), 115 (43), 102 (21), 77 (19); CIMS (2-methylpropane) m / e (relative intensity) 220 (M $+\mathrm{H}^{+}$, base); EIHRMS m/e $219.0896\left(\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{3}\right.$ requires 219.0895). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{3}$: C, $65.73 ; \mathrm{H}, 5.99 ; \mathrm{N}, 6.39$. Found: C , 65.76; H, 6.05; N, 6.74

Ethyl (E)-2-(hydroxyimino)-3-decenoate (18b): ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, $200 \mathrm{MHz}, \mathrm{ppm}) 9.36(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NOH}), 6.89(1 \mathrm{H}, \mathrm{dt}, J=16.2,7.0 \mathrm{~Hz}$, $=\mathrm{CH}), 6.57(1 \mathrm{H}, \mathrm{d}, J=16.2 \mathrm{~Hz}, \mathrm{CH}=), 4.32(2 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.23\left(2 \mathrm{H}\right.$, apparent $\left.\mathrm{q}, J=6.7 \mathrm{~Hz}=\mathrm{CHCH}_{2}\right), 1.47-1.28$ $\left(8 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{4}\right), 1.36\left(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 0.89(3 \mathrm{H}, \mathrm{t}$ $\left.J=7.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}, \mathrm{ppm}\right) 163.4(\mathrm{C}=$ O), $147.2(\mathrm{C}=\mathrm{N}), 145.5(=\mathrm{CH}), 115.6(=\mathrm{CH}), 61.7\left(\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $33.9\left(\mathrm{CH}_{2}\right), 31.4\left(\mathrm{CH}_{2}\right), 28.5\left(\mathrm{CH}_{2}\right), 28.3\left(\mathrm{CH}_{2}\right), 22.3\left(\mathrm{CH}_{2}\right), 13.7$ $\left(\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 10.2\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;$ IR (neat) $\nu_{\max } 3264,2958,2930,2858$,

1730, 1420, 1374, 1318, 1182, 1022, $978 \mathrm{~cm}^{-1}$; EIMS m / e (relative intensity) $227\left(8, \mathrm{M}^{+}\right), 154$ (12), 142 (76), 114 (70), 97 (57), 85 (47), 67 (27), 55 (base); CIMS (2-methylpropane) m / e (relative intensity) 228 ($\mathrm{M}+\mathrm{H}^{+}$, base); ElHRMS m / e (relative intensity) 227.1511 $\left(\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{NO}_{3}\right.$ requires 227.1521).

Ethyl (E)-2-(hydroxyimino)-3-pentenoate (18c): ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $200 \mathrm{MHz}, \mathrm{ppm}) 10.60(1 \mathrm{H}, \mathrm{br}$ s, NOH), $7.03(1 \mathrm{H}, \mathrm{dq}, J=16.2,6.8$ $\mathrm{Hz},=\mathrm{CH}), 6.60(1 \mathrm{H}, \mathrm{d}, J=16.2 \mathrm{~Hz}, \mathrm{CH}=), 4.32(2 \mathrm{H}, \mathrm{q}, J=7.1$ $\left.\mathrm{Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.92\left(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz},=\mathrm{CHCH}_{3}\right), \mathrm{I} .35(3 \mathrm{H}, \mathrm{t}, J$ $\left.=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}, \mathrm{ppm}\right) 163.5(\mathrm{C}=$ O), $146.7(\mathrm{C}=\mathrm{N}), 140.6(=\mathrm{CH}), 117.3(=\mathrm{CH}), 61.8\left(\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $19.6\left(\mathrm{CH}_{3}\right), 13.9\left(\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$; IR (neat) $\nu_{\text {max }} 3268,2984,2940,1730$, 1444, 1374, 1318, 1280, 1180, 1160, 1022, $974 \mathrm{~cm}^{-1}$; EIMS m/e (relative intensity) 157 (13, M^{+}), 142 (83), 114 (base), 96 (54), 68 (45); CIMS (2-methylpropane) m / e (relative intensity) $158\left(\mathrm{M}+\mathrm{H}^{+}\right.$, base); EIHRMS m/e $157.0739\left(\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{NO}_{3}\right.$ requires 157.0738$)$.

General Procedure for the Preparation of \boldsymbol{N}-(Phenylsulfonyl)- or \boldsymbol{N}-(Methylsulfonyl)-1-aza-1,3-butadienes: Ethyl (E)-4-Phenyl-2-[(phe-nylsulfonyl)imino)-3-butenoate (19a). A solution of 18a ($500 \mathrm{mg}, 2.28$ mmol, 1.0 equiv) in anhydrous carbon tetrachloride ($11.4 \mathrm{~mL}, 0.20 \mathrm{M}$) was cooled to $0{ }^{\circ} \mathrm{C}$ under nitrogen and treated sequentially with triethylamine ($280 \mathrm{mg}, 0.38 \mathrm{~mL}, 2.73 \mathrm{mmol}, 1.2$ equiv) and benzenesulfinyl chloride ($400 \mathrm{mg}, 0.29 \mathrm{~mL}, 2.48 \mathrm{mmol}$). The resulting reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 25 min . The triethylamine hydrochloride was removed by filtration. The filtrate was stirred at $23^{\circ} \mathrm{C}$ for 2 h and then concentrated in vacuo. Flash chromatography (Florisil, $3 \mathrm{~cm} \times 9 \mathrm{~cm}$, 10% ethyl acetate/hexane eluant) afforded $19 \mathrm{a}(0.54 \mathrm{~g}, 0.78 \mathrm{~g}$ theoretical, 69%) as a gold oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}, \mathrm{ppm}\right) 8.02(2 \mathrm{H}$, $\left.\mathrm{d}, J=6.6 \mathrm{~Hz}, o-\mathrm{SO}_{2} \mathrm{ArH}\right), 7.61(1 \mathrm{H}, \mathrm{d}, J=16.9 \mathrm{~Hz}, \mathrm{CH}=), 7.34-7.68$ $\left(8 \mathrm{H}, \mathrm{m}, \mathrm{ArH}, m, p-\mathrm{SO}_{2} \mathrm{ArH}\right), 6.84(1 \mathrm{H}, \mathrm{d}, J=16.5 \mathrm{~Hz},=\mathrm{CH}), 4.56$ ($2 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), $1.46\left(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right.$); IR (neat) $\nu_{\max } 3064,2840,1735,1614,1560,1474,1448,1391,1370$, 1268, $1165,1014,970,868 \mathrm{~cm}^{-1}$; CIMS (2-methylpropane) m / e (relative intensity) $344\left(\mathrm{M}+\mathrm{H}^{+}\right.$, base); ClHR MS $\mathrm{m} / \mathrm{e} 344.0939\left(\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{4} \mathrm{~S}\right.$ requires 344.0957). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{4} \mathrm{~S}: \mathrm{C}, 62.95 ; \mathrm{H}, 5.00$; N, 4.08; S, 9.34. Found: C, 62.66; H, 5.18; N, 3.99; S, 8.96.

Ethyl (E)-2-[(phenylsulfonyl)imino]-3-decenoate (19b): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}, \mathrm{ppm}\right) 7.99\left(2 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}, o-\mathrm{SO}_{2} \mathrm{ArH}\right)$, $7.64-7.54\left(3 \mathrm{H}, \mathrm{m}, m, p-\mathrm{SO}_{2} \mathrm{ArH}\right), 6.79(1 \mathrm{H}, \mathrm{dt}, J=16.0,6.8 \mathrm{~Hz}$, $\left.=\mathrm{CHCH}_{2}\right), 6.20(1 \mathrm{H}, \mathrm{d}, J=16.1 \mathrm{~Hz}, \mathrm{CH}=), 4.42(2 \mathrm{H}, \mathrm{q}, J=7.0$ $\left.\mathrm{Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.30\left(2 \mathrm{H}\right.$, apparent $\left.\mathrm{q}, J=7.0 \mathrm{~Hz},=\mathrm{CHCH}_{2}\right)$, 1.47-1.28 (8 H, m, $\left.\left(\mathrm{CH}_{2}\right)_{4}\right), 1.33\left(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 0.87$ (3 H , apparent $\mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}_{3}$); IR (neat) $\nu_{\text {max }} 2930,2858,1740,1580,1448$, 1330, 1310, 1186, 1166, 1148, 1090, $752 \mathrm{~cm}^{-1}$; ElMS m/e (relative intensity) 278 (2), 77 (base); CIMS (2-methylpropane) m / e (relative intensity) $352\left(\mathrm{M}+\mathrm{H}^{+}\right.$, base); CIHRMS $m / e 352.1583\left(\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{4} \mathrm{~S}\right.$ requires 352.1583).
Ethyl (E)-2-[(phenylsulfonyl)imino]-3-pentenoate (19c): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}, \mathrm{ppm}\right) 7.96\left(2 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, o-\mathrm{SO}_{2} \mathrm{ArH}\right), 7.51$ (3 $\left.\mathrm{H}, \mathrm{m}, m, p-\mathrm{SO}_{2} \mathrm{ArH}\right), 6.78\left(1 \mathrm{H}, \mathrm{dq}, J=16.2,6.3 \mathrm{~Hz},=\mathrm{CHCH}_{3}\right), 6.22$ ($1 \mathrm{H}, \mathrm{d}, J=15.8 \mathrm{~Hz}, \mathrm{CH}=$), $4.46\left(2 \mathrm{H}, \mathrm{q}, J=6.9 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.98$ ($3 \mathrm{H}, \mathrm{d}, J=6.2 \mathrm{~Hz},=\mathrm{CHCH}_{3}$), $1.43\left(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right.$); $I R$ (neat) $\nu_{\text {max }} 2980,2936,1738,1636,1580,1448,1370,1328,1256$, 1166, $1016,964,862 \mathrm{~cm}^{-1}$; EIMS m / e (relative intensity) $281\left(1, \mathrm{M}^{+}\right)$, 208 (10), 77 (base); CIMS (2-methylpropane) m / e (relative intensity) $282\left(\mathrm{M}+\mathrm{H}^{+}\right.$, base); EIHRMS m/e $281.0728\left(\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{4} \mathrm{~S}\right.$ requires 281.0722).

Ethyl (E)-2-[(methylsulfonyl)imino]-4-phenyl-3-butenoate (20a): ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}, \mathrm{ppm}\right) 7.55(2 \mathrm{H}, \mathrm{m}, o-\mathrm{ArH}), 7.45(1 \mathrm{H}, \mathrm{d}, J$ $=12.3 \mathrm{~Hz}, \mathrm{CH}=), 7.44(3 \mathrm{H}, \mathrm{m}, m, p-\mathrm{ArH}), 6.90(1 \mathrm{H}, \mathrm{d}, J=12.1 \mathrm{~Hz}$, $=\mathrm{CH}), 4.46\left(2 \mathrm{H}, \mathrm{q}, J=7.3 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.16\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SO}_{2} \mathrm{CH}_{3}\right)$, $1.40\left(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$; IR (neat) $\nu_{\max } 2984,2938,1738$, $1614,1576,1450,1392,1370,1268,1182,1150,1014,968,870 \mathrm{~cm}^{-1}$; ElMS m/e (relative intensity) 204 (5), 131 (base), 103 (28), 77 (16); CIMS (2-methylpropane) m / e (relative intensity) $282\left(\mathrm{M}+\mathrm{H}^{+}\right.$, base); ElHRMS $m / e 281.0725\left(\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{4}\right.$ requires 281.0721$)$

Ethyl (\boldsymbol{E})-2-[(methylsulfonyl)imino]-3-decenoate (20b): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}, \mathrm{ppm}\right) 6.79\left(1 \mathrm{H}, \mathrm{dt}, J=15.7,7.1 \mathrm{~Hz},=\mathrm{CHCH}_{2}\right)$, $6.23(1 \mathrm{H}, \mathrm{d}, J=16.1 \mathrm{~Hz}, \mathrm{CH}=), 4.38\left(2 \mathrm{H}, \mathrm{q} . J=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $3.17\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SO}_{2} \mathrm{CH}_{3}\right), 2.31\left(2 \mathrm{H}, \mathrm{q}, J=7.0 \mathrm{~Hz},=\mathrm{CHCH}_{2}\right), 1.37(3$ $\left.\mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.27\left(8 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{4}\right), 0.87(3 \mathrm{H}, \mathrm{ap}-$ parent $\mathrm{t}, J=6.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}$); IR (neat) $\nu_{\text {max }} 2930,2858,1740,1620$, $1588,1466,1370,1326,1148,1018,968 \mathrm{~cm}^{-1}$; EIMS m/e (relative intensity) 216 (16), 210 (13), 138 (base), 79 (51), 55 (54); CIMS (2methylpropane) m / e (relative intensity) $290\left(\mathrm{M}+\mathrm{H}^{+}\right.$, base); CIHRMS $m / e 290.1424\left(\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{~S}\right.$ requires 290.1426).
Ethyl (E)-2-[(methylsulfonyl)iminol-3-pentenoate (20c): 'H NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}, \mathrm{ppm}\right) 6.81\left(1 \mathrm{H}, \mathrm{dq}, J=16.0,6.9 \mathrm{~Hz},=\mathrm{CHCH}_{3}\right)$, $6.25(1 \mathrm{H}, \mathrm{d}, J=16.5 \mathrm{~Hz}, \mathrm{CH}=), 4.37\left(2 \mathrm{H}, \mathrm{q}, J=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $3.17\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SO}_{2} \mathrm{CH}_{3}\right), 2.02\left(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz},=\mathrm{CHCH}_{3}\right), 1.36(3$
$\mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$); IR (neat) $\nu_{\max } 2938,1736,1636,1586$, 1372, 1318, 1184, 1148, 1016, $964,810 \mathrm{~cm}^{-1}$; CIMS (2-methylpropane) m / e (relative intensity) $220\left(\mathrm{M}+\mathrm{H}^{+}\right.$, base); EIHRMS m/e 219.0564 $\left(\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{NO}_{4} \mathrm{~S}\right.$ requires 219.0565).

General Procedures for the $[4+2]$ Cycloaddition Reactions of N -(Phenylsulfonyl)- or \boldsymbol{N}-(Methylsulfonyl)-1-aza-1,3-butadienes. RoomTemperature [4 + 2] Cycloaddition: ($2 R^{*}, 4 S^{*}$)-2-Ethoxy-6-(ethoxy-carbonyl)-4-phenyl-1-(phenylsulfonyl)-1,2,3,4-tetrahydropyridine (21a). A solution of 19 a ($88.0 \mathrm{mg}, 0.26 \mathrm{mmol}, 1.0$ equiv) in anhydrous dichloromethane ($0.51 \mathrm{~mL}, 0.50 \mathrm{M}$) under argon at $23^{\circ} \mathrm{C}$ was treated with ethyl vinyl ether ($73.9 \mathrm{mg}, 1.02 \mathrm{mmol}, 4.0$ equiv). The reaction mixture was stirred at $23^{\circ} \mathrm{C}$ for 24 h and then concentrated in vacuo. Flash chromatography (Florisil, $1.5 \mathrm{~cm} \times 13 \mathrm{~cm}, 7 \%$ ethyl acetate/hexane eluant) afforded 21a ($85.0 \mathrm{mg}, 106 \mathrm{mg}$ theoretical, 80%) as a pale yellow solid: $\mathrm{mp} 101-102^{\circ} \mathrm{C}$ (EtOAc/hexane); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}, 200 \mathrm{MHz}$, $\mathrm{ppm}) 8.10\left(2 \mathrm{H}, \mathrm{dd}, J=5.4,1.9 \mathrm{~Hz}, o-\mathrm{SO}_{2} \mathrm{ArH}\right), 7.07(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, $6.95\left(3 \mathrm{H}, \mathrm{dd}, J=5.8,1.8 \mathrm{~Hz}, m, p-\mathrm{SO}_{2} \mathrm{ArH}\right), 6.69(1 \mathrm{H}, \mathrm{d}, J=2.6 \mathrm{~Hz}$, $=\mathrm{CH}), 5.11(1 \mathrm{H}, \mathrm{dd}, J=5.0,2.5 \mathrm{~Hz}, \mathrm{NCHO}), 4.18(2 \mathrm{H}, \mathrm{dq}, J=7.1$, $\left.2.7 \mathrm{~Hz}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 3.78(1 \mathrm{H}, \mathrm{dq}, J=7.1,2.4 \mathrm{~Hz}, \mathrm{OCHHCH} 3), 3.08$ ($\left.1 \mathrm{H}, \mathrm{dq}, J=7.0,2.4 \mathrm{~Hz}, \mathrm{OCH} H \mathrm{CH}_{3}\right), 2.89(1 \mathrm{H}, \mathrm{dt}, J=9.3,3.0 \mathrm{~Hz}$, $\mathrm{C} H \mathrm{Ph}), 2.11\left(1 \mathrm{H}\right.$, ddd, $\left.J=14.5,9.1,4.1, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{e}}\right), 1.98(1 \mathrm{H}, \mathrm{dt}, J=$ $\left.14.3,2.5 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{a}} H_{\mathrm{e}}\right), 1.05\left(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.92(3$ $\left.\mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}, \mathrm{ppm}\right) 165.4$ ($\mathrm{C}=\mathrm{O}$), 143.7 (C, C6), 139.0 (C aromatic), 133.5 (CH aromatic), 133.1 (CH aromatic), $129.2(\mathrm{CH}$ aromatic), $128.5(\mathrm{CH}$ aromatic), $128.4(\mathrm{CH}$ aromatic), 128.1 (CH aromatic), 128.0 (C aromatic), $126.8(\mathrm{CH}, \mathrm{C} 5$), $82.1(\mathrm{CH}, \mathrm{C} 2), 63.1\left(\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 61.4\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 36.5(\mathrm{CH}, \mathrm{C} 4)$, $35.6\left(\mathrm{CH}_{2}, \mathrm{C} 3\right), 14.3\left(\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 13.9\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$; IR (neat) $\nu_{\text {max }}$ 2976, 2932, 1724, 1638, 1448, 1344, 1324, 1238, 1168, 1092, 1062, 1044, $962,758 \mathrm{~cm}^{-1}$; EIMS m/e (relative intensity) $415\left(2, \mathrm{M}^{+}\right), 274(17), 228$ (base), 154 (26), 141 (36), 129 (27), 77 (86); CIMS (2-methylpropane) m / e (relative intensity) 371 (22), 370 (base), 228 (4), 205 (8); EIHRMS $m / e 415.1448\left(\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{5} \mathrm{~S}\right.$ requires 415.1453). Anal. Caled for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{5} \mathrm{~S}: \mathrm{C}, 63.58 ; \mathrm{H}, 6.08 ; \mathrm{N}, 3.37 ; \mathrm{S}, 7.72$. Found: C, 63.27; H, 6.11 ; N, 3.54; S, 7.79.

The structure of 21a was unambiguously established in a single-crystal X-ray structure determination. ${ }^{216}$

Base-Catalyzed Epimerization of ($2 R^{*}, 4 S^{*}$)-2-Ethoxy-6-(ethoxy-carbonyl)-4-phenyl-1-(phenylsulfonyl)-1,2,3,4-tetrahydropyridine (21a): Preparation of ($2 R^{*}, 4 R^{*}$)-2-Ethoxy-6-(ethoxycarbonyl)-4-phenyl-1-(phenylsulfonyl)-1,2,3,4-tetrahydropyridine, A solution of 21 a (10.0 mg , $24.0 \mu \mathrm{~mol}, 1.0$ equiv) in anhydrous benzene ($120 \mu \mathrm{~L}, 0.20 \mathrm{M}$) at $23^{\circ} \mathrm{C}$ was treated with a solution of $\operatorname{DBU}(2 \mathrm{M}$ in benzene, $3 \mu \mathrm{~L}, 0.25$ equiv). The reaction mixture was stirred at $23^{\circ} \mathrm{C}$ for 1.5 h . The resulting reaction mixture was diluted with ether (10 mL), washed with 2% aqueous hydrochloric acid ($2 \times 5 \mathrm{~mL}$) and saturated aqueous sodium chloride ($1 \times 5 \mathrm{~mL}$), dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo: ${ }^{1} \mathrm{H}$ NMR of the mixture revealed a $1: 2.5$ ratio of endo/exo isomers. For exo-21a: ' ${ }^{\text {H NMR }}\left(\mathrm{C}_{6} \mathrm{D}_{6}, 200 \mathrm{MHz}, \mathrm{ppm}\right) 7.81\left(2 \mathrm{H}, \mathrm{m}, o-\mathrm{SO}_{2} \mathrm{ArH}\right)$, $7.00-6.81\left(8 \mathrm{H}, \mathrm{m}, \mathrm{PhH}, m, p-\mathrm{SO}_{2} \mathrm{ArH}\right), 6.23(1 \mathrm{H}, \mathrm{dd}, J=4.4,2.2 \mathrm{~Hz}$, $=\mathrm{CH}), 5.40(1 \mathrm{H}, \mathrm{t}, J=3.4 \mathrm{~Hz}, \mathrm{NCHO}), 3.93(2 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.45\left(3 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{3}, \mathrm{CHPh}\right), 2.55(1 \mathrm{H}$, apparent d, $J=17 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{ax}} \mathrm{H}_{\mathrm{eq}}$), $2.20\left(1 \mathrm{H}, \mathrm{dm}, J=17 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{ax}} H_{\mathrm{eq}}\right), 1.05(3$ $\left.\mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.90\left(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$.

Pressure-Promoted [$4+2$] Cycloaddition. ($2 R^{*}, 3 R^{*}, 4 S^{*}$)-2-Eth-oxy-6-(ethoxycarbonyl)-3-methyl-4-phenyl-1-(phenylsulfonyl)-1,2,3,4tetrahydropyridine (28a). Ethyl (E)-4-phenyl-2-[(phenylsulfonyl)imi-nol-3-butenoate ($19 \mathrm{a} ; 28.0 \mathrm{mg}, 81.5 \mu \mathrm{~mol}, 1.0$ equiv) was placed in a Teflon tube sealed with a brass clamp at one end. A solution of (Z) -ethyl-l-propenyl ether ($31.0 \mathrm{mg}, 360 \mu \mathrm{~mol}, 4.4$ equiv) in anhydrous dichloromethane ($160 \mu \mathrm{~L}, 0.50 \mathrm{M}$) was added to the reaction vessel, and the mixture was purged with argon and sealed with another brass clamp. The reaction vessel was placed in a pressure reactor (6.2 kbar$)^{37}$ at 25 ${ }^{\circ} \mathrm{C}$ for 96 h . After depressurization, the reaction mixture was transferred to a round-bottom flask and concentrated in vacuo. Flash chromatography (Florisil, $1 \mathrm{~cm} \times 14 \mathrm{~cm}, 5 \%$ ethyl acetate/hexane eluant) afforded 28a ($19.0 \mathrm{mg}, 35.0 \mathrm{mg}$ theoretical, 54%) as a pale yellow solid: $\mathrm{mp} 73-74$ ${ }^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3} /\right.$ hexane $) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}, \mathrm{ppm}\right) 8.07(2 \mathrm{H}$, dd, $\left.J=7.9,1.3 \mathrm{~Hz}, o-\mathrm{SO}_{2} \mathrm{ArH}\right), 7.55\left(3 \mathrm{H}, \mathrm{m}, m, p-\mathrm{SO}_{2} \mathrm{ArH}\right), 7.19(5 \mathrm{H}$, $\mathrm{s}, \mathrm{ArH}), 6.47(1 \mathrm{H}, \mathrm{d}, J=3.4 \mathrm{~Hz},=\mathrm{CH}), 4.77(1 \mathrm{H}, \mathrm{d}, J=2.8 \mathrm{~Hz}$, $\mathrm{NCHO}), 4.34\left(2 \mathrm{H}, \mathrm{dq}, J=7.1,3.7 \mathrm{~Hz}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.57(1 \mathrm{H}, \mathrm{dq}$, $\left.J=7.1,2.3 \mathrm{~Hz}, \mathrm{OC} H \mathrm{HCH}_{3}\right), 3.38(1 \mathrm{H}, \mathrm{dd}, J=8.8,3.3 \mathrm{~Hz}, \mathrm{CHPh})$, $3.01\left(1 \mathrm{H}, \mathrm{dq}, J=7.0,2.3 \mathrm{~Hz}, \mathrm{OCH} H \mathrm{CH}_{3}\right), 2.16(1 \mathrm{H}, \mathrm{qdd}, J=7.3$, $\left.3.3,2.4 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 1.36\left(3 \mathrm{H}, \mathrm{t}, J=7.1, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.98(3 \mathrm{H}$, $\left.\left.\mathrm{t}, J=7.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 0.67(3 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}, \mathrm{CHCH})_{3}\right){ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}, \mathrm{ppm}\right) 165.8(\mathrm{C}=\mathrm{O}), 139.3(\mathrm{C}, \mathrm{C} 6), 138.9(\mathrm{C}$

[^11]aromatic), 133.5 (CH aromatic), 131.1 (CH aromatic), 130.9 (CH aromatic), 129.2 (CH aromatic), $128.3(\mathrm{CH}$ aromatic), $127.6(\mathrm{CH}$ aromatic), 127.4 (C aromatic), $126.8(\mathrm{CH}, \mathrm{C} 5), 86.0(\mathrm{CH}, \mathrm{C} 2), 63.6$ $\left(\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 61.5\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 42.4(\mathrm{CH}, \mathrm{C} 4), 35.8(\mathrm{CH}, \mathrm{C} 3), 14.7$ $\left(\mathrm{CH}_{3}, \mathrm{C} 3\right), 14.3\left(\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 13.9\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$; IR (neat) $\nu_{\max } 2978$, $2930,1728,1642,1448,1360,1276,1204,1170,1092,984,774 \mathrm{~cm}^{-1}$; EIHRMS m / e (relative intensity) 384 (3), 288 (11), 242 (54), 168 (24), 141 (25), 131 (40), 103 (25), 86 (74), 77 (base), 58 (52); CIMS (2methylpropane) m / e (relative intensity) 384 (base), 288 (16), 242 (22), 205 (31), 143 (36); EIHRMS $m / e 429.1616\left(\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{NO}_{5} \mathrm{~S}\right.$ requires 429.1610).

The structure of 28a was unambiguously established in a single-crystal X-ray structure determination. ${ }^{21 \mathrm{~b}}$
(2R*,4S*)-2-Ethoxy-6-(ethoxycarbonyl)-4-n-hexyl-1-(phenyl-sulfonyl)-1,2,3,4-tetrahydropyridine (21b): ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right.$, ppm) $7.93\left(2 \mathrm{H}, \mathrm{dd}, J=6.7,1.7 \mathrm{~Hz}, o-\mathrm{SO}_{2} \mathrm{ArH}\right.$), $7.16(3 \mathrm{H}, \mathrm{m}, m, p-$ $\left.\mathrm{SO}_{2} \mathrm{ArH}\right), 6.46(1 \mathrm{H}, \mathrm{d}, J=3.2 \mathrm{~Hz}=\mathrm{CH}), 5.04(1 \mathrm{H}, \mathrm{t}, J=3.6 \mathrm{~Hz}$, $\mathrm{NCHO}), 4.30\left(2 \mathrm{H}, \mathrm{dq}, J=7.2,3.3 \mathrm{~Hz}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.60(1 \mathrm{H}, \mathrm{dq}$, $\left.J=7.7,2.4 \mathrm{~Hz}, \mathrm{OC} H \mathrm{HCH}_{3}\right), 3.18(1 \mathrm{H}, \mathrm{dq}, J=7.0,2.6 \mathrm{~Hz}$, $\left.\mathrm{OCH} \mathrm{HCH}_{3}\right), 1.81(1 \mathrm{H}, \mathrm{m},=\mathrm{CHCH}), 1.65-1.52\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}, \mathrm{C} 3\right)$, $1.35\left(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.23\left(10 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{5}\right), 0.99$ ($3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$) , $0.84\left(3 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$; $1 R$ (neat) $\nu_{\max } 2956,2930,2858,1732,1636,1448,1362,1312,1272$, 1170, 1126, 1096, $1018,998,756 \mathrm{~cm}^{-1}$; EIMS m/e (relative intensity) $423\left(2, \mathrm{M}^{+}\right), 250$ (21), 236 (base), 152 (18), 141 (32), 77 (56); CIMS (2-methylpropane) m / e (relative intensity) 379 (23), 378 (base), 236 (44); EIHRMS m/e $423.2078\left(\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{NO}_{5} \mathrm{~S}\right.$ requires 423.2080).
(2R * \boldsymbol{R}^{*})-2-Ethoxy-6-(ethoxycarbonyl)-4-methyl-1-(phenyl-sulfonyl)-1,2,3,4-tetrahydropyridine (21c): ${ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}, 200 \mathrm{MHz}$, ppm) $8.07\left(2 \mathrm{H}, \mathrm{dd}, J=5.6,3.1 \mathrm{~Hz}, o-\mathrm{SO}_{2} \mathrm{ArH}\right), 7.89(3 \mathrm{H}, \mathrm{m}, m, p-$ $\left.\mathrm{SO}_{2} \mathrm{ArH}\right), 6.37(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz},=\mathrm{CH}), 5.08(1 \mathrm{H}, \mathrm{dd}, J=2.4,1.4$ $\mathrm{Hz}, \mathrm{NCHO}), 4.20\left(2 \mathrm{H}, \mathrm{dq}, J=7.1,2.7 \mathrm{~Hz}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.73(1 \mathrm{H}$, $\left.\mathrm{dq}, J=7.1,2.8 \mathrm{~Hz}, \mathrm{OCH} \mathrm{HCH}_{3}\right), 3.07(1 \mathrm{H}, \mathrm{dq}, J=7.1,2.8 \mathrm{~Hz}$, $\left.\mathrm{OCH} H \mathrm{CH}_{3}\right), 1.70\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{3}\right), 1.56(1 \mathrm{H}$, ddd, $J=14.2,7.9,3.8$ $\left.\mathrm{Hz}, \mathrm{C} . H_{\mathrm{ax}} \mathrm{H}_{\mathrm{eq}}\right), 1.40\left(1 \mathrm{H}, \mathrm{dt}, J=13.8,1.2 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{ax}} H_{\mathrm{eq}}\right), 1.09(3 \mathrm{H}, \mathrm{t}$, $\left.J=7.1 \mathrm{~Hz}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.93\left(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 0.89$ ($3 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}, \mathrm{CHCH}_{3}$); IR (neat) $\nu_{\text {max }} 2978,2934,1728,1642$, 1446, 1390, 1302, 1264, 1172, 1068, 1026, 972, $760 \mathrm{~cm}^{-1}$; EIMS m/e (relative intensity) 353 ($9, \mathrm{M}^{+}$), 308 (50), 166 (base), 77 (95); CIMS (2-methylpropane) m / e (relative intensity) 308 (base), 166 (4); EIHRMS $m / e 353.1287\left(\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{5} \mathrm{~S}\right.$ requires 353.1296$)$.
($2 R^{*}, 4 S^{*}$)-2-Ethoxy-6-(ethoxycarbonyl)-4-phenyl-1-(methyl-sulfonyl)-1,2,3,4-tetrahydropyridine (22a): ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right.$, ppm $) 7.28(5 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 6.72(1 \mathrm{H}, \mathrm{d}, J=3.3 \mathrm{~Hz}=\mathrm{CH}), 5.40(1 \mathrm{H}$, $\mathrm{t}, J=3.7 \mathrm{~Hz}, \mathrm{NCHO}), 4.23\left(2 \mathrm{H}, \mathrm{dq}, J=7.2,3.5 \mathrm{~Hz}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $3.67\left(1 \mathrm{H}, \mathrm{dq}, J=7.1,1.7 \mathrm{~Hz}, \mathrm{OCH} \mathrm{HCH}_{3}\right), 3.60(1 \mathrm{H}, \mathrm{dt}, J=9.2,3.3$ $\mathrm{Hz}, \mathrm{C} H \mathrm{Ph}), 3.42\left(1 \mathrm{H}, \mathrm{dq}, J=7.1,1.5 \mathrm{~Hz}, \mathrm{OCH} H \mathrm{CH}_{3}\right), 3.35(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{SO}_{2} \mathrm{CH}_{3}\right), 2.58\left(1 \mathrm{H}\right.$, ddd, $\left.J=13.6,9.2,4.4 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{ax}} \mathrm{H}_{\mathrm{eq}}\right), 2.30(1 \mathrm{H}$, $\left.\mathrm{dt}, J=14.3,3.3 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{ax}} \mathrm{H}_{\mathrm{eq}}\right), 1.33\left(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $1.17\left(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$; IR (neat) $\nu_{\max } 2978,2936,1724$, $1644,1452,1390,1346,1322,1240,1218,1160,1120,1070,960,778$ cm^{-1}; ElMS m / e (relative intensity) 228 (70), $200(11), 182(16), 154$ (32), 131 (base), 103 (49), 77 (32); CIMS (2-methylpropane) m / e (relative intensity) 340 (24). 308 (base), 262 (15), 228 (73), 81 (86); ElHRMS $m / e 353.1296\left(\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{5} \mathrm{~S}\right.$ requires 353.1297).
($2 R^{*}, 4 S^{*}$)-2-Ethoxy-6-(ethoxycarbonyl)-4-n-hexyl-1-(methyl-sulfonyl)-1,2,3,4-tetrahydropyridine (22b): ${ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}, 200 \mathrm{MHz}$, ppm) $6.58(1 \mathrm{H}, \mathrm{d}, J=3.2 \mathrm{~Hz},=\mathrm{CH}), 5.31(1 \mathrm{H}, \mathrm{dd}, J=3.7,2.6 \mathrm{~Hz}$, $\mathrm{NCHO}), 4.07\left(2 \mathrm{H}, \mathrm{dq}, J=6.9,3.7 \mathrm{~Hz}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.61(1 \mathrm{H}, \mathrm{dq}$, $\left.J=7.0,1.8 \mathrm{~Hz}, \mathrm{OC} H \mathrm{HCH}_{3}\right), 3.03(1 \mathrm{H}, \mathrm{dq}, J=7.0,1.8 \mathrm{~Hz}$, $\left.\mathrm{OCH} H \mathrm{CH}_{3}\right), 2.97\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SO}_{2} \mathrm{CH}_{3}\right), 2.02(1 \mathrm{H}, \mathrm{ddd}, J=12.4,8.4,3.6$ $\left.\mathrm{Hz}, \mathrm{CH}_{\mathrm{ax}} \mathrm{H}_{\mathrm{eq}}\right), 1.80\left(2 \mathrm{H}\right.$, apparent d, $\left.J=12.6 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{ax}} H_{\mathrm{eq}}=\mathrm{CHCH}\right)$, $1.36-1.12\left(10 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{5}\right), 0.97\left(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $0.96\left(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 0.88(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$); IR (neat) $\nu_{\text {max }} 2928,2958,1726,1642,1466,1348,1324$, 1232, $1162,1090,962 \mathrm{~cm}^{-1}$; ElMS m / e (relative intensity) $361\left(2, \mathrm{M}^{+}\right)$, 282 (13), 236 (base), 152 (59), 72 (20); CIMS (2-methylpropane) m/e (relative intensity) 316 (base), 238 (17), 81 (14); ElHRMS m/e $316.1923\left(\mathrm{C}_{17} \mathrm{H}_{31} \mathrm{NO}_{5} \mathrm{~S}\right.$ requires 361.1923$)$.
(2R*,4S*)-2-Ethoxy-6-(ethoxycarbonyl)-4-methyl-1-(methyl-sulfonyl)-1,2,3,4-tetrahydropyridine (22c): ${ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}, 200 \mathrm{MHz}$, ppm) $6.40(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz},=\mathrm{CH}), 5.27(1 \mathrm{H}, \mathrm{t}, J=2.6 \mathrm{~Hz}$, $\mathrm{NCHO}), 4.03\left(2 \mathrm{H}, \mathrm{dq}, J=7.0,2.1 \mathrm{~Hz}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.62(1 \mathrm{H}, \mathrm{dq}$, $\left.J=7.0,2.0 \mathrm{~Hz}, \mathrm{OCH} \mathrm{HCH}_{3}\right), 2.97(1 \mathrm{H}, \mathrm{dq}, J=7.0,2.1 \mathrm{~Hz}$, $\left.\mathrm{OCH} H \mathrm{CH}_{3}\right), 2.95\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SO}_{2} \mathrm{CH}_{3}\right), 1.95\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{a} \times} \mathrm{H}_{\mathrm{\infty}}, \mathrm{CHCH}_{3}\right)$, $1.60\left(1 \mathrm{H}, \mathrm{d}, J=13.5 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{ax}} H_{\mathrm{eq}}\right), 0.94\left(9 \mathrm{H}, \mathrm{m}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$, $\mathrm{OCH}_{2} \mathrm{CH}_{3}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$); IR (neat) $\nu_{\text {max }} 2934,2362,1722,1640,1456$, 1392, 1370, 1320, 1258, 1228, 1162, 1092, 1072, $968 \mathrm{~cm}^{-1}$; ElMS m/e (relative intensity) $29 \mid\left(5, \mathrm{M}^{+}\right), 246(10), 212(16), 166$ (base); CIMS (2-methylpropanc) m / e (relative intensity) 246 (base), 212 (2);

EIHRMS $m / e 291.1149\left(\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{NO}_{5} \mathrm{~S}\right.$ requires 291.1140).
($2 R^{*}, 4 S^{*}$)-2-(Benzyloxy)-6-(ethoxycarbonyl)-4-phenyl-1-(phenyl-sulfonyl)-1,2,3,4-tetrahydropyridine (27b): ${ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}, 200 \mathrm{MHz}$, ppm) $8.05\left(2 \mathrm{H}, \mathrm{dd}, J=4.3,2.2 \mathrm{~Hz}, o-\mathrm{SO}_{2} \mathrm{ArH}\right), 7.10-6.85(13 \mathrm{H}, \mathrm{m}$, $\operatorname{ArH}), 6.71(1 \mathrm{H}, \mathrm{d}, J=3.2 \mathrm{~Hz}=\mathrm{CH}), 5.19(1 \mathrm{H}, \mathrm{t}, J=3.6 \mathrm{~Hz}$, $\mathrm{NCHO}), 4.85(1 \mathrm{H}, \mathrm{d}, J=11.7 \mathrm{~Hz}, \mathrm{OCHHPh}), 4.23(2 \mathrm{H}, \mathrm{q}, J=7.3$ $\mathrm{Hz}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $4.22(1 \mathrm{H}, \mathrm{d}, J=11.4 \mathrm{~Hz}, \mathrm{OCH} H \mathrm{Ph}), 2.85(1 \mathrm{H}$, $\mathrm{dt}, J=8.9,3.4 \mathrm{~Hz}, C H \mathrm{Ph}), 2.10(1 \mathrm{H}, \mathrm{ddd}, J=11.1,9.0,4.1 \mathrm{~Hz}$, $\left.\mathrm{CH}_{\mathrm{ax}} \mathrm{H}_{\mathrm{eq}}\right), 1.95\left(1 \mathrm{H}, \mathrm{dt}, J=11.1,4.0 \mathrm{~Hz}_{\mathrm{C}}, \mathrm{CH}_{\mathrm{ax}} H_{\mathrm{eq}}\right), 1.06(3 \mathrm{H}, \mathrm{t}, J=$ $7.3 \mathrm{~Hz}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$); IR (neat) $\nu_{\max } 3064,2938,1736,1642,1496$, $1448,1360,1288,1214,1170,1056,964 \mathrm{~cm}^{-1}$; EIMS m/e (relative intensity) 230 (19), 91 (base), 65 (4); CIMS (2-methylpropane) m / e (relative intensity) 370 (base), 336 (4), 230 (10); CIHRMS m/e $478.1674\left(\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{NO}_{5} \mathrm{~S}\right.$ requires 478.1688).
(2R,3R*,4S*)-2-(Benzyloxy)-6-(ethoxycarbonyl)-3-methyl-4-phenyl-1-(phenylsulfonyl)-1,2,3,4-tetrahydropyridine (28b), ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}, \mathrm{ppm}\right) 8.10\left(2 \mathrm{H}, \mathrm{dd}, J=6.7,1.5 \mathrm{~Hz}, o-\mathrm{SO}_{2} \mathrm{ArH}\right)$, $7.70-7.54\left(3 \mathrm{H}, \mathrm{m}, m, p-\mathrm{SO}_{2} \mathrm{ArH}\right), 7.29-7.02(10 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.51$ (1 $\mathrm{H}, \mathrm{d}, J=3.2 \mathrm{~Hz},=\mathrm{CH}), 4.88(1 \mathrm{H}, \mathrm{d}, J=2.6 \mathrm{~Hz}, \mathrm{NCHO}), 4.64(1$ $\mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}, \mathrm{OC} H \mathrm{HPh}), 4.37(2 \mathrm{H}, \mathrm{dq}, J=7.0,3.7 \mathrm{~Hz}$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.07(1 \mathrm{H}, \mathrm{d}, J=11.9 \mathrm{~Hz}, \mathrm{OCH} H \mathrm{Ph}), 3.42(1 \mathrm{H}, \mathrm{dd}$, $J=8.9,3.3, \mathrm{~Hz}, \mathrm{C} H \mathrm{Ph}), 2.17\left(1 \mathrm{H}, \mathrm{qdd}, J=7.2,8.8,2.6 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right)$, $1.35\left(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.69(3 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}$, CHCH_{3}); IR (neat) $\nu_{\text {max }} 2926,1728,1642,1494,1362,1276,1204,1170$, 1090, 1050, $874 \mathrm{~cm}^{-1}$; CIMS (2-methylpropane) m / e (relative intensity) 384 (base), 350 (12), 244 (19), 143 (20); EIHRMS m/e 491.1765 $\left(\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{NO}_{5} \mathrm{~S}\right.$ requires 491.1766).
($2 R^{*}, 4 R^{*}$)-6-(Ethoxycarbonyl)-2,4-diphenyl-1-(phenylsulfonyl)-1,2,3,4-tetrahydropyridine (29a). ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}, 200 \mathrm{MHz}, \mathrm{ppm}\right) 8.08$ ($2 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}, o-\mathrm{SO}_{2} \mathrm{ArH}$), $7.20-6.90(11 \mathrm{H}, \mathrm{m}), 6.66(1 \mathrm{H}, \mathrm{d}, J$ $=3.1 \mathrm{~Hz},=\mathrm{CH}), 6.44(2 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, o-\mathrm{PhH}), 5.22(1 \mathrm{H}, \mathrm{t}, J=$ $6.4 \mathrm{~Hz}, \mathrm{NCHPh}), 4.23\left(2 \mathrm{H}, \mathrm{dq}, J=7.3,3.7 \mathrm{~Hz}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.91$ ($1 \mathrm{H}, \mathrm{td}, J=6.1,3.7 \mathrm{~Hz}, \mathrm{C} H \mathrm{Ph}$), 2.31 (1 H , ddd, $J=14.0,6.7,6.1 \mathrm{~Hz}$, $\left.\mathrm{C}_{\mathrm{ax}} \mathrm{H}_{\mathrm{eq}}\right), 2.00\left(1 \mathrm{H}\right.$, ddd, $\left.J=14.0,6.7,6.0 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{ax}} H_{\mathrm{eq}}\right), 1.45(3 \mathrm{H}$, $\mathrm{t}, J=7.3 \mathrm{~Hz}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$); IR (neat) $\nu_{\max } 3030,2926,2854,1728$, $1638,1602,1496,1448,1364,1256,1168,1140,1094,964,846 \mathrm{~cm}^{-1}$; ElMS m/e (relative intensity) 306 (23), 231 (18), 131 (20), 103 (32), 91 (30), 77 (base), 51 (28); ClMS (2-methylpropane) m / e (relative intensity) $448\left(\mathrm{M}+\mathrm{H}^{+}\right.$, base $)$; EIHRMS $m / e 447.1504\left(\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{NO}_{4} \mathrm{~S}\right.$ requires 447.1504).
($2 R^{*}, 4 R^{*}$)-6-(Ethoxycarbonyl)-2-(4'-methoxyphenyl)-4-(phenyl-sulfonyl)-1,2,3,4-tetrahydropyridine (29b). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}, 200 \mathrm{MHz}\right.$, ppm) $8.15\left(2 \mathrm{H}, \mathrm{dd}, J=6.9,2.9 \mathrm{~Hz}, o-\mathrm{SO}_{2} \mathrm{ArH}\right), 7.20-6.90(8 \mathrm{H}, \mathrm{m}$, $\left.m, p-\mathrm{SO}_{2} \mathrm{ArH}, \mathrm{PhH}\right), 6.66(1 \mathrm{H}, \mathrm{d}, J=3.4 \mathrm{~Hz}=\mathrm{CH}), 6.51(4 \mathrm{H}, \mathrm{d}, J$ $\left.=8.8 \mathrm{~Hz}, \mathrm{ArOCH}_{3}\right), 5.18(1 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz}, \mathrm{NCHPh}), 4.25(2 \mathrm{H}, \mathrm{dq}$, $\left.J=7.1,3.6 \mathrm{~Hz}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.23\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 2.95(1 \mathrm{H}, \mathrm{dt}, J$ $=6.6,3.5 \mathrm{~Hz}, \mathrm{C} H \mathrm{Ph}), 2.35\left(1 \mathrm{H}\right.$, ddd, $\left.J=13.8,6.2,6.1 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{ax}} \mathrm{H}_{\text {eq }}\right)$, $2.10\left(1 \mathrm{H}\right.$, ddd, $\left.J=13.8,7.0,6.8 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{ax}} H_{\text {eq }}\right), 1.10(3 \mathrm{H}, \mathrm{t}, J=7.1$ $\mathrm{Hz}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$); IR (neat) $\nu_{\text {max }} 2928,1728,1612,1514,1448,1362$, 1250, 1168, 1032, $754 \mathrm{~cm}^{-1}$; EIMS m / e (relative intensity) $477\left(12, \mathrm{M}^{+}\right)$, 404 (8), 336 (60), 134 (base), 77 (51); C1MS (2-methylpropane) m / e (relative intensity) $478\left(\mathrm{M}+\mathrm{H}^{+}, 68\right), 338$ (base); ElHRMS m / e $477.1610\left(\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{NO}_{5} \mathrm{~S}\right.$ requires 477.1610$)$.
($2 R^{*}, 3 S^{*}, 4 S^{*}$)-2-Ethoxy-6-(ethoxycarbonyl)-3-methyl-4-phenyl-1-(phenylsulfonyl)-1,2,3,4-tetrahydropyridine (30): ${ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}, 200$ $\mathrm{MHz}, \mathrm{ppm}) 8.01\left(2 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, o-\mathrm{SO}_{2} \mathrm{ArH}\right), 7.00-6.84(8 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH}), 6.67(1 \mathrm{H}, \mathrm{dd}, J=3.6,1.8 \mathrm{~Hz},=\mathrm{CH}), 5.07(1 \mathrm{H}, \mathrm{d}, J=4.4 \mathrm{~Hz}$, $\mathrm{NCHO}), 4.16\left(2 \mathrm{H}, \mathrm{dq}, J=7.0,3.3 \mathrm{~Hz}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.00(1 \mathrm{H}, \mathrm{dq}$, $\left.J=7.4,1.8 \mathrm{~Hz}, \mathrm{OC} H \mathrm{HCH}_{3}\right), 3.42(1 \mathrm{H}, \mathrm{dq}, J=7.0,1.7 \mathrm{~Hz}$, $\left.\mathrm{OCH} H \mathrm{CH}_{3}\right), 2.20(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH} 3), 2.08(1 \mathrm{H}, \mathrm{dd}, J=10.2,3.0 \mathrm{~Hz}$, CHPh $), 1.09\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 0.77(3 \mathrm{H}, \mathrm{d}, J=6.6$ $\mathrm{Hz}, \mathrm{CHCH}_{3}$); IR (neat) $\nu_{\max } 2976,2928,1734,1636,1560,1448,1362$, $1172,1088,1030,750 \mathrm{~cm}^{-1}$, ElMS m/e (relative intensity) 288 (21), 242 (38), 196 (12), 168 (25), 141 (34), 86 (94), 77 (base), 58 (61); ClMS (2-methylpropane) m / e (relative intensity 384 (base), 244 (5): EIHRMS $m / e 429.1614\left(\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{NO}_{5} \mathrm{~S}\right.$ requires 429.1610).
($4 R^{*}$)-6-(Ethoxycarbonyl)-2,2-dimethoxy-4-phenyl-1-(phenyl-sulfonyl)-1,2,3,4-tetrahydropyridine (31): ${ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}, 200 \mathrm{MHz}$, $\mathrm{ppm}) 8.45\left(2 \mathrm{H}, \mathrm{dd}, J=6.3,1.4 \mathrm{~Hz}, o-\mathrm{SO}_{2} \mathrm{ArH}\right), 7.05-6.96(8 \mathrm{H}, \mathrm{m}$, $\operatorname{ArH}), 6.58(1 \mathrm{H}, \mathrm{d}, J=3.5 \mathrm{~Hz}=\mathrm{C} H), 4.16(2 \mathrm{H}, \mathrm{dq}, J=7.3,1.4 \mathrm{~Hz}$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.60(1 \mathrm{H}, \mathrm{td}, J=9.9,3.5 \mathrm{~Hz}, \mathrm{CHPh}), 3.10(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 2.74\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 2.51\left(1 \mathrm{H}, \mathrm{t}, J=10.9 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{ax}} \mathrm{H}_{\mathrm{eq}}\right), 2.32$ $\left(1 \mathrm{H}, \mathrm{dd}, J=9.1,5.0 \mathrm{~Hz}, \mathrm{Ch}_{\mathrm{ax}} H_{\mathrm{eq}}\right), 1.01(3 \mathrm{H}, \mathrm{t}, J \stackrel{\mathrm{ax}}{=} 7.2 \mathrm{~Hz}$, $\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$); IR (neat) $\nu_{\text {max }} 3062,2946,1726,1648,1492,1450,1324$, 1274. 1168, 1124, $1088,1050,980 \mathrm{~cm}^{-1}$: EIMS m / e (relative intensity) 290 (33), 141 (9), 121 (16), 88 (base), 77 (39), 58 (29), 51 (12); ClMS (2-mcthylpropanc) m / e (relative intensity) $432\left(\mathrm{M}+\mathrm{H}^{+}\right.$, base); CIHRMS m/e $432.1481\left(\mathrm{C}_{22} \mathrm{H}_{2 S} \mathrm{NO}_{6} \mathrm{~S}\right.$ requires 432.148 I$)$.
($2 R^{*}, 3 S^{*}, 4 R^{*}$)-3-Acetoxy-2-(benzyloxy)-6-(ethoxycarbonyl)-4-phenyl-1-(phenylsulfonyl)-1,2,3,4-tetrahydropyridine (32): 'H NMR
$\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}, \mathrm{ppm}\right) 8.10\left(2 \mathrm{H}, \mathrm{dd}, J=6.9, \mathrm{I} .3 \mathrm{~Hz}, o-\mathrm{SO}_{2} \mathrm{ArH}\right)$, $7.56\left(3 \mathrm{H}, \mathrm{m}, m, p-\mathrm{SO}_{2} \mathrm{ArH}\right), 7.20\left(3 \mathrm{H}, \mathrm{m}, m, p-\mathrm{CH}_{2} \mathrm{ArH}\right), 7.15(5 \mathrm{H}$, $\mathrm{m}, \mathrm{Ph}), 6.95\left(2 \mathrm{H}, \mathrm{m}, o-\mathrm{CH}_{2} \mathrm{ArH}\right), 6.50(1 \mathrm{H}, \mathrm{dd}, J=3.5,0.9 \mathrm{~Hz}$, $=\mathrm{CH}), 5.47(1 \mathrm{H}, \mathrm{d}, J=2.7 \mathrm{~Hz}, \mathrm{NCHOBn}), 5.27(1 \mathrm{H}, \mathrm{dd}, J=2.8$, $1.7 \mathrm{~Hz}, \mathrm{CHOAc}), 4.38(1 \mathrm{H}, \mathrm{d}, J=11.5 \mathrm{~Hz}, \mathrm{OCH} H \mathrm{Hh}), 4.35(2 \mathrm{H}, \mathrm{dq}$, $\left.J=7.1,2.8 \mathrm{~Hz}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.00(1 \mathrm{H}, \mathrm{d}, J=11.4 \mathrm{~Hz}, \mathrm{OCH} H \mathrm{Ph})$, $3.43(1 \mathrm{H}, \mathrm{t}, J=3.4 \mathrm{~Hz}, \mathrm{CHPh}), 2.05\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}\right), 1.35(3 \mathrm{H}, \mathrm{t}$, $J=7.1 \mathrm{~Hz}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$); IR (neat) $\nu_{\text {max }} 2926,1730,1642,1448,1370$, 1352, 1280, 1244, 1154, 1092, 1052, $868 \mathrm{~cm}^{-1}$; EIMS m/e (relative intensity) 368 (23), 141 (14), 128 (17), 115 (19), 105 (36), 91 (86), 77 (base), 57 (25), 51 (34); CIMS (2-methylpropane) m / e (relative intensity) 405 (base), 317 (40), 288 (23), 244 (19), 228 (65), 218 (23), 143 (62); CIHRMS $m / e 536.1738\left(\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{NO}_{7} \mathrm{~S}\right.$ requires 536.1743).
(2R*,3R*,4R*)-3-Acetoxy-2-(benzyloxy)-6-(ethoxycarbonyl)-4-phenyl-1-(phenylsulfonyl)-1,2,3,4-tetrahydropyridine (33): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}, \mathrm{ppm}\right) 8.07\left(2 \mathrm{H}, \mathrm{dd}, J=7.0,1.5 \mathrm{~Hz}, o-\mathrm{SO}_{2} \mathrm{ArH}\right)$ $7.61\left(3 \mathrm{H}, \mathrm{m}, m, p-\mathrm{SO}_{2} \mathrm{ArH}\right), 7.23\left(3 \mathrm{H}, \mathrm{m}, m, p-\mathrm{CH}_{2} \mathrm{ArH}\right), 7.13(5 \mathrm{H}$, $\mathrm{s}, \mathrm{PhH}), 7.05\left(2 \mathrm{H}, \mathrm{m}, \mathrm{o}-\mathrm{CH}_{2} \mathrm{ArH}\right), 6.50(1 \mathrm{H}, \mathrm{d}, J=3.3 \mathrm{~Hz},=\mathrm{C} H)$, $5.15(1 \mathrm{H}, \mathrm{d}, J=3.5 \mathrm{~Hz}, \mathrm{NCHOBn}), 4.95(1 \mathrm{H}, \mathrm{dd}, J=9.1,3.5 \mathrm{~Hz}$, $\mathrm{CHOAc}), 4.65(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}, \mathrm{OC} H \mathrm{HPh}), 4.35(2 \mathrm{H}, \mathrm{dq}, J=7.1$, $\left.1.1 \mathrm{~Hz}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.17(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}, \mathrm{OCHHPh}), 3.90(1$ $\mathrm{H}, \mathrm{dd}, J=9.1,3.3 \mathrm{~Hz}, \mathrm{C} H \mathrm{Ph}), 1.70\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}\right), 1.35(3 \mathrm{H}, \mathrm{t}, J$ $=7.25 \mathrm{~Hz}, J=\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$); IR (neat) $\nu_{\max } 3032,2930,2856,1734$, $1646,1448,1368,1316,1280,1236,1170,1060,928 \mathrm{~cm}^{-1}$; EIMS m / e (relative intensity) 368 (16), 288 (9), 141 (9), 91 (base), 77 (31); CIMS (2-methylpropane) m / e (relative intensity) 428 (base), 405 (25), 288 (12), 228 (19), 143 (24); CIHRMS $m / e 536.1728\left(\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{NO}_{7} \mathrm{~S}\right.$ requires 536.1743).

Ethyl (E)-4-[(Phenylsulfonyl)iminol-2-butenoate (35). A solution of ethyl 4-oxo-2-butenoate ${ }^{30}$ ($826 \mathrm{mg}, 6.45 \mathrm{mmol}$) and benzenesulfonamide $(1.50 \mathrm{~g}, 6.70 \mathrm{mmol}, 1.03$ equiv) in methylene chloride (25 mL) was cooled to $0^{\circ} \mathrm{C}$ and treated with triethylamine ($2.1 \mathrm{~mL}, 15 \mathrm{mmol}, 2.33$ equiv). The mixture was cooled to $-5^{\circ} \mathrm{C}$, and a solution of titanium tetrachloride in methylene chloride $(6.0 \mathrm{~mL}, 0.64 \mathrm{~m}, 3.8 \mathrm{mmol}, 0.59$ equiv) was added dropwise over 20 min . The resulting reaction mixture was stirred for 9 h at -5 to $0^{\circ} \mathrm{C}$ and at $22^{\circ} \mathrm{C}$ for 1 h . Filtration of the mixture through Celite and concentration of the filtrate afforded a brown solid, Redissolution of the solid in ether ($50 \mathrm{~mL}, 2 \mathrm{~h}$), filtration, and concentration of the filtrate afforded $35(1.04 \mathrm{~g}, 1.72 \mathrm{~g}$ theoretical, $60 \%)$, which was sufficiently pure by ${ }^{1} \mathrm{H}$ NMR (homogeneous) for use in the Diels-Alder reactions: yelow solid; mp $87-89^{\circ} \mathrm{C}$ (ether/hexane (1:1); ${ }^{1} \mathrm{H} N \mathrm{NR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}, \mathrm{ppm}\right) 8.74(\mathrm{~d}, 1 \mathrm{H}, \mathrm{C} 4-\mathrm{H}, J=9.3 \mathrm{~Hz})$ 7.97 (d, 2 H , aromatic) $7.60(\mathrm{~m}, 3 \mathrm{H}$, aromatic), 7.31 (dd, $1 \mathrm{H}, \mathrm{C} 3-\mathrm{H}$, $J=9.3,15.7 \mathrm{~Hz}), 6.73(\mathrm{~d}, 1 \mathrm{H}, \mathrm{C} 2-\mathrm{H}, J=15.7 \mathrm{~Hz}), 4.28(\mathrm{q}, 2 \mathrm{H}$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.2 \mathrm{~Hz}\right), 1.32\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.2 \mathrm{~Hz}\right)$; IR $(\mathrm{KBr}) \nu_{\text {max }} 3062,2984,1713,1632,1602,1576,1450,1354,1323,1288$, $1181,1171,1149,1091,1043,996 \mathrm{~cm}^{-1}$; EIMS m / e (relative intensity) 141 (24), 126 (7), 98 (6), 93 (5), 78 (7), 77 (base), 73 (11), 56 (16); CIMS (2-methylpropane) m / e (relative intensity) 268 ($\mathrm{M}+\mathrm{H}^{+}$, base). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{4} \mathrm{~S}: \mathrm{C}, 53.93 ; \mathrm{H}, 4.90 ; \mathrm{N}, 5.24$. Found: C , 53.90; H, 5.06; N, 5.49

Ethyl (E)-4-[(Methylsulfonyl)imino]-2-butenoate (36), A solution of ethyl 4-oxo-2-butenoate ${ }^{30}$ ($497 \mathrm{mg}, 3.88 \mathrm{mmol}$) and methanesulfonamide ($374 \mathrm{mg}, 3.93 \mathrm{mmol}, 1.03$ equiv) in methylene chloride (15 mL) was cooled to $0^{\circ} \mathrm{C}$ and treated with triethylamine ($1.25 \mathrm{~mL}, 8.90 \mathrm{mmol}, 2.3$ equiv). The resulting reaction mixture was cooled to $-6^{\circ} \mathrm{C}$, and a solution of titanium tetrachloride in methylene chloride ($3.6 \mathrm{~mL}, 0.64$ M, $2.3 \mathrm{mmol}, 0.59$ equiv) was added dropwise over 14 min . The reaction mixture was stirred at -2 to $0^{\circ} \mathrm{C}$ for 9.5 h and allowed to warm to 25 ${ }^{\circ} \mathrm{C}$ over 30 mir . Filtration of the mixture through Celite and concentration of the filtrate afforded a brown solid. Redissolution of the solid in ether ($30 \mathrm{~mL}, 2 \mathrm{~h}$), filtration, and concentration of the filtrate afforded crude 36 as a yellow oil that solidified on standing at $4^{\circ} \mathrm{C}(367 \mathrm{mg}, 795$ mg theoretical, 46%) and that was sufficiently pure by ${ }^{1} \mathrm{H}$ NMR (homogeneous) for use in the Diels-Alder reactions: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}, \mathrm{ppm}) 8.73(\mathrm{~d}, 1 \mathrm{H}, \mathrm{C} 4-\mathrm{H}, J=9.5 \mathrm{~Hz}), 7.34(\mathrm{dd}, 1 \mathrm{H}, \mathrm{C} 3-\mathrm{H}, J$ $=9.5,15.8 \mathrm{~Hz}), 6.75(\mathrm{~d}, 1 \mathrm{H}, \mathrm{C} 2-\mathrm{H}, J=15.8 \mathrm{~Hz}), 4.30(\mathrm{q}, 2 \mathrm{H}$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.3 \mathrm{~Hz}\right), 3.10\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{SO}_{2}\right), 1.35\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CO}_{2}\right.$ $\mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.3 \mathrm{~Hz}$); IR (neat) $\nu_{\max } 3277,2935,1718,1636,1597$, 1560, 1370, 1308, 1261, 1191, 1154, 1028, 969.801 cm^{-1}; ElMS m/e (relative intensity) $205\left(4, \mathrm{M}^{+}\right), 160(4) .132(13), 126(6), 99(4), 98$ (44), 96 (25), 95 (27), 83 (20), 82 (25), 81 (10), 80 (base), 79 (68), 64 (13), 55 (29), 54 (25); CIMS (2-methylpropane) m / e (relative intensity) 206 ($\mathrm{M}+\mathrm{H}$, base); ClHRMS m/e $206.0489\left(\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{NO}_{4} \mathrm{~S}\right.$ requires 206.0487).

General Procedure for Room-Temperature Diels-Alder Reaction of $\mathbf{3 5}$ and 36. (2R $\left.{ }^{*}, 4 S^{*}\right)$-2-(Benzyloxy)-4-(ethoxycarbonyl)-1-(phenyl-sulfonyl)-1,2,3,4-tetrahydropyridine (37b). A solution of $35(71.1 \mathrm{mg}$, 0.27 mmol) in methylene chloride ($0.53 \mathrm{~mL}, 0.50 \mathrm{M}$) was cooled to $0^{\circ} \mathrm{C}$ and treated with benzyl vinyl ether ($190 \mathrm{mg}, 1.41 \mathrm{mmol}, 5.3$ equiv), and
the mixture was allowed to warm gradually to $21^{\circ} \mathrm{C}$. Small aliquots were removed from the reaction mixture to monitor the progress by ${ }^{1} \mathrm{H}$ NMR. The reaction was judged complete ($30: 1$ endo/exo) after 45.5 h . Evaporation of solvent in vacuo and purification of the residue by flash column chromatography (Florisil, $12 \times 1.5 \mathrm{~cm}, 20 \%$ ethyl acetate/hexane eluant) afforded 37b as a white solid ($94 \mathrm{mg}, 107 \mathrm{mg}$ theoretical, 88%, 25:1 endo/exo). For pure 37 b : $\mathrm{mp} 79-80.5^{\circ} \mathrm{C}$ (white needles, ether/ hexane (1:1)); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}, \mathrm{ppm}\right) 7.76(\mathrm{~m}, 2 \mathrm{H}$, aromatic), 7.51 (m, 3 H , aromatic), 7.27 (m, 5 H , aromatic), 6.67 (dt, I H, $\mathrm{C} 6-\mathrm{H}, J=1.3,8.2 \mathrm{~Hz}), 5.65(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} 2-\mathrm{H}$ and $\mathrm{C} 5-\mathrm{H}), 4.71(\mathrm{~d}, 1 \mathrm{H}$, OCHHPh, $J=11.8 \mathrm{~Hz}), 4.57(\mathrm{~d}, 1 \mathrm{H}, \mathrm{OCH} H \mathrm{HPh}, J=11.8 \mathrm{~Hz}), 3.92$ (m, $2 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $2.81(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 4-\mathrm{H}), 2.70\left(\mathrm{dt}, 1 \mathrm{H}, \mathrm{C} 3-\mathrm{H}_{\mathrm{eq}}\right.$, $J=1.3,13.8 \mathrm{~Hz}$), 1.20 (ddd, $1 \mathrm{H}, \mathrm{C} 3-\mathrm{H}_{\mathrm{ax}}, J=2.3,7.6,13.8 \mathrm{~Hz}$), 1.07 (t, $3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.1 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}, \mathrm{ppm}\right)$ $172.7\left(\mathrm{CO}_{2} \mathrm{Et}\right), 139.6$ (C aromatic) 138.1 (C aromatic), 133.4 (CH aromatic), 129.7 (CH aromatic), $128.4(\mathrm{CH}$ aromatic), $127.9(\mathrm{CH}$ aromatic), 127.7 (CH aromatic), 127.1 (CH aromatic), $122.9(\mathrm{CH}, \mathrm{C} 6$), $108.1(\mathrm{CH}, \mathrm{C} 5), 81.0(\mathrm{CH}, \mathrm{C} 2), 69.7\left(\mathrm{OCH}_{2} \mathrm{Ph}\right), 61.0\left(\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $34.0(\mathrm{CH}, \mathrm{C} 4), 28.4\left(\mathrm{CH}_{2}, \mathrm{C} 3\right), 13.9\left(\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$; IR (KBr) $\nu_{\text {max }}$ 2976, 2937, 2895, 1728, 1450, 1363, 1348, 1333, 1311, 1293, 1271, 1253, $1214,1175,1160,1135,1106,1057,1030,932,734,691 \mathrm{~cm}^{-1}$; EIMS m / e (relative intensity) 294 (2), 220 (4), 152 (2), 141 (5), 132 (6), 108 (2), 107 (4), 105 (6), 91 (base), 80 (9), 79 (8), 78 (6), 65 (5); CIMS (2-methylpropane) m / e (relative intensity) $294\left(\mathrm{M}+\mathrm{H}^{+}-\mathrm{HOCH}_{2} \mathrm{Ph}\right.$, base); EIHRMS $m / e 401.1307\left(\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{5} \mathrm{~S}\right.$ requires 401.1297). Anal. Caled for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{5} \mathrm{~S}: \mathrm{C}, 62.83 ; \mathrm{H}, 5.77 ; \mathrm{N}, 3.49$. Found: $\mathrm{C}, 62.75$; H, 5.91; N, 3.72.
($2 R^{*}, 4 S^{*}$)-2-Ethoxy-4-(ethoxycarbonyl)-1-(phenylsulfonyl)-1,2,3,4tetrahydropyridine (37a). Conditions: ethyl vinyl ether (5 equiv), 0.28 mmol scale, $46 \mathrm{~h}, 21^{\circ} \mathrm{C}$. Examination of the crude product by ${ }^{1} \mathrm{H}$ NMR (500 MHz) showed a $29.5: 1$ mixture of endo/exo isomers (isolated $\mathbf{3 7 a}$ $82 \%, 22: 1$ (endo/exo)). For pure 37a: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right.$, $\mathrm{ppm}) 7.80(\mathrm{~d}, 2 \mathrm{H}$, aromatic, $J=7.0 \mathrm{~Hz}), 7.50(\mathrm{~m}, 3 \mathrm{H}$, aromatic), 6.65 (dd, $1 \mathrm{H}, \mathrm{C} 6-\mathrm{H}, J=1.3,9.7 \mathrm{~Hz}$), 5.30 (ddd, $1 \mathrm{H}, \mathrm{C} 5-\mathrm{H}, J=1.2,6.0$, $9.7 \mathrm{~Hz}), 5.26$ (broad s, $1 \mathrm{H}, \mathrm{C} 2-\mathrm{H}), 4.10\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.67$ (m, $1 \mathrm{H}, \mathrm{OC} H \mathrm{HCH}_{3}$) $3.51\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH} \mathrm{OCH}_{3}\right), 2.79$ (apparent t, 1 $\mathrm{H}, \mathrm{C} 4-\mathrm{H}, J=6.0 \mathrm{~Hz}), 2.60\left(\mathrm{dt}, 1 \mathrm{H}, \mathrm{C} 3-\mathrm{H}_{\mathrm{eq}}, J=1.2,12.8 \mathrm{~Hz}\right), 1.23$ (t, $3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}, \mathrm{~J}=7.2 \mathrm{~Hz}$), $1.18\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 3-\mathrm{H}_{\mathrm{ax}}, \mathrm{C} 3\right), 1.05(\mathrm{t}, 3$ $\left.\mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.0 \mathrm{~Hz}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right.$, ppm $) 172.9$ $\left(\mathrm{CO}_{2} \mathrm{Et}\right), 139.9$ (C aromatic), $133.3(\mathrm{CH}$ aromatic), $129.6(\mathrm{CH}$ aromatic), 127.1 (CH aromatic), $123.0(\mathrm{CH}, \mathrm{C} 6), 107.6(\mathrm{CH}, \mathrm{C} 5), 81.0$ $(\mathrm{CH}, \mathrm{C} 2), 63.3\left(\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 61.0\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 34.0(\mathrm{CH}, \mathrm{C} 4), 28.4$ $\left(\mathrm{CH}_{2}, \mathrm{C} 3\right), 14.7\left(\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.1\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$; IR (neat) $\nu_{\text {max }} 2977$, $2929,1730,1701,1685,1654,1447,1396,1364,1350,1337,1311,1267$, 1172, 1108, 1046, 919, $728 \mathrm{~cm}^{-1}$; EIMS m/e (relative intensity) 294 (13), 266 (26), 220 (11), 152 (21), 141 (17), 124 (15), 103 (25), 96 (25), 81 (10); 80 (base), 77 (36), 73 (32), 68 (10); CIMS (2-methylpropane) m / e (relative intensity) $294\left(\mathrm{M}+\mathrm{H}^{+}-\mathrm{EtOH}\right.$, base); ElHRMS m/e $339.1136\left(\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{5} \mathrm{~S}\right.$ requires 339.1140). Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{5} \mathrm{~S}: \mathrm{C}, 56.62 ; \mathrm{H}, 6.24 ; \mathrm{N}, 4.13$. Found: C, 56.73; H, 6.54; N, 4.18.

Diagnostic ${ }^{1} \mathrm{H}$ NMR signals utilized for the estimation of the endo/ exo ratio (by integration) for the minor cycloadduct are as follows: 3.34 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{C} 4-\mathrm{H}$) , $2.15\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 3-\mathrm{H}_{\mathrm{ex}}\right)$. This was established to be the exo diastereomer by deliberate epimerization as detailed in the following text.

Base-Catalyzed Epimerization of ($2 R^{*}, 4 S^{*}$)-2-Ethoxy-4-(ethoxy-carbonyl)-1-(phenyisulfonyl)-1,2,3,4-tetrahydropyridine (37a): Preparation of ($2 R^{*}, 4 \boldsymbol{R}^{*}$)-2-Ethoxy-4-(ethoxycarbonyl)-1-(phenylsulfonyl)-$1,2,3,4$-tetrahydropyridine. A solution of $37 a(9.3 \mathrm{mg}, 27 \mu \mathrm{~mol}$) in dry benzene (0.12 mL) was treated with a solution of DBU (2 M in benzene, $10 \mu \mathrm{~mol}, 1$ equiv), and the mixture was stirred at $21^{\circ} \mathrm{C}$ for 1.5 h . The resulting reaction mixture was diluted with ether (5 mL) and washed with aqueous hydrochloric acid ($2 \%, 2 \times 3 \mathrm{~mL}$). The organic phase was dried (MgSO_{4}) and concentrated in vacuo. A $4.5: 1$ mixture of isomers was obtained (4.5:1 C4 epimers) with the major isomer having the ($2 R^{*}, 4 R^{*}$) relative configuration: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}, \mathrm{ppm}\right.$) 7.77 (dd, 2 H , aromatic, $J=1.6,7 \mathrm{~Hz}$), $7.53(\mathrm{~m}, 3 \mathrm{H}$, aromatic), 6.59 (ddd, $1 \mathrm{H}, \mathrm{C} 6-\mathrm{H}, J=1.26,2.50,8.3 \mathrm{~Hz}$), $5.25(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} 5-\mathrm{H}$ and $\mathrm{C} 2-\mathrm{H}), 4.09\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.1 \mathrm{~Hz}\right), 3.82(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{OCHHCH} 3), 3.64(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCHHCH}), 3.34(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 4-\mathrm{H}), 2.15(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{C} 3-\mathrm{H}_{\mathrm{eq}}\right), 1.20\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right.$ and $\left.\mathrm{C} 3-\mathrm{H}_{\mathrm{ax}}\right)$.
($2 R^{*}, 4 S^{*}$)-2-Ethoxy-4-(ethoxycarbonyl)-1-(methylsulfonyl)-1,2,3,4tetrahydropyridine (38a), Conditions: ethyl vinyl ether (5 equiv), 0.26 mmol scale, $56 \mathrm{~h}, 21^{\circ} \mathrm{C}$. Examination of the crude product by ${ }^{\prime} \mathrm{H}$ NMR (300 MHz) showed a $27.5: 1$ mixture of endo/exo isomers (isolated 38a 73\%, 21:1 (endo/exo)). For pure 38a: ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$, ppm) $6.52(\mathrm{~d}, 1 \mathrm{H}, \mathrm{C} 6-\mathrm{H}, J=8.3 \mathrm{~Hz}), 5.28(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} 5-\mathrm{H}$ and $\mathrm{C} 2-\mathrm{H})$, $4.15\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.1 \mathrm{~Hz}\right), 3.53\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}, J=\right.$ $7.0 \mathrm{~Hz}), 3.01(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 4-\mathrm{H}), 2.97\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{SO}_{2}\right), 2.98(\mathrm{dd}, 1 \mathrm{H}$,
$\mathrm{C} 3-\mathrm{H}_{\mathrm{eq}}, J=1.2,14.1 \mathrm{~Hz}$), 1.82 (ddd, $1 \mathrm{H}, \mathrm{C} 3-\mathrm{H}_{\mathrm{ax}}, J=1.7,7.3,14.1$ $\mathrm{Hz}), 1.27\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.1 \mathrm{~Hz}\right), 1.13\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right.$, $J=7.0 \mathrm{~Hz}$); diagnostic ${ }^{1}{ }^{2} \mathrm{H}$ NR signals utilized for the estimation of the endo/exo ratio (by integration) for the minor cycloadduct were 3.40 (m, $1 \mathrm{H}, \mathrm{C} 4-\mathrm{H}), 2.45(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 3-\mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right.$, ppm $) 172.9\left(\mathrm{CO}_{2} \mathrm{Et}\right), 123.3(\mathrm{CH}, \mathrm{C} 6), 105.5(\mathrm{CH}, \mathrm{C} 5), 81.2(\mathrm{CH}, \mathrm{C} 2)$, $63.5\left(\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 61.1\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 41.0\left(\mathrm{CH}_{3} \mathrm{SO}_{2}\right), 33.9(\mathrm{CH}, \mathrm{C} 4)$, $27.8\left(\mathrm{CH}_{2}, \mathrm{C} 3\right), 14.8\left(\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.2\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$; IR (neat) $\nu_{\text {max }}$ $2978,1730,1654,1438,1336,1268,1211,1166,1102,1046,952,922$, $762 \mathrm{~cm}^{-1}$; EIMS m/e (relative intensity) 232 (11), 204 (55), 198 (7), 158 (22), 124 (91), 96 (12), 81 (13), 80 (base), 72 (10), 68 (13), 53 (9); CIMS (2-methylpropane) m / e (relative intensity) $232\left(\mathrm{M}+\mathrm{H}^{+}-\right.$ EtOH , base); EIHRMS $m / e 277.0984\left(\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{NO}_{5} \mathrm{~S}\right.$ requires 277.0984). Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{NO}_{5} \mathrm{~S}: \mathrm{C}, 47.64 ; \mathrm{H}, 6.91 ; \mathrm{N}, 5.05$. Found: C , 47.81; H, 7.24; N, 4.77.
($2 S^{*}, 3 S^{*}, 4 R^{*}$)-2-Ethoxy-4-(ethoxycarbonyl)-3-methyl-1-(phenyl-sulfonyl)-1,2,3,4-tetrahydropyridine (39a-endo). Conditions: (E)-ethyl-1-propenyl ether (3.1 equiv), 0.17 mmol scale, $37 \mathrm{~h}, 21^{\circ} \mathrm{C}$. Examination of crude ${ }^{1} \mathrm{H}$ NMR (300 MHz) showed a $2: 1$ mixture of endo/exo isomers (isolated 39a 93\%, 2.2:1 (endo/exo)). For pure 39aendo: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}, \mathrm{ppm}\right) 7.82(\mathrm{~m}, 2 \mathrm{H}$, aromatic), 7.45 ($\mathrm{m}, 3 \mathrm{H}$, aromatic), 6.63 (d apparent triplet, $1 \mathrm{H}, \mathrm{C} 6-\mathrm{H}, J=1.1,8.5$ Hz), 5.11 (ddd, $1 \mathrm{H}, \mathrm{C} 5-\mathrm{H}, J=1.3,5.5,8.5 \mathrm{~Hz}$), $5.01(\mathrm{~d}, 1 \mathrm{H}, \mathrm{C} 2-\mathrm{H}$, $J=1.3 \mathrm{~Hz}), 4.09\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.54\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, 2.85 (ddq, $1 \mathrm{H}, \mathrm{C} 3-\mathrm{H}, J=1.3,5.5,7.3 \mathrm{~Hz}), 2.51(\mathrm{~d}, 1 \mathrm{H}, \mathrm{C} 4-\mathrm{H}, J=$ $5.5 \mathrm{~Hz}), 1.23\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.1 \mathrm{~Hz}\right), 1.01\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{OCH}_{2-}\right.$ $\left.\mathrm{CH}_{3}, J=7.0 \mathrm{~Hz}\right), 0.47(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH} 3 \mathrm{CH}, J=7.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}, \mathrm{ppm}\right) 172.9\left(\mathrm{CO}_{2} \mathrm{Et}\right), 140.6(\mathrm{C}$ aromatic), $133.4(\mathrm{CH}$ aromatic), 129.4 (CH aromatic), 127.4 (CH aromatic), $122.0(\mathrm{CH}, \mathrm{C} 6)$, $103.9(\mathrm{CH}, \mathrm{C} 5), 85.6(\mathrm{CH}, \mathrm{C} 2), 63.5\left(\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 60.9\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $41.3(\mathrm{CH}, \mathrm{C} 4), 32.7(\mathrm{CH}, \mathrm{C} 3), 15.9\left(\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.8\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $14.2\left(\mathrm{CH}_{3} \mathrm{CH}\right)$; IR (neat) $\nu_{\max } 2977,2931,1735,1654,1480,1448,1363$, $1341,1257,1172,1112,1092,1027,995,928,909,881,853,759,729$ cm^{-1}; EIMS m/e (relative intensity) $292(46), 280(25), 141(15), 138$ (13), 110 (16), 94 (base), 86 (48), 84 (6), 82 (17), 72 (45), 58 (25); CIMS (2-methylpropane) m / e (relative intensity) $308\left(\mathrm{M}+\mathrm{H}^{+}-\right.$ EtOH, base); EIHRMS $m / e 353.1297\left(\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{5} \mathrm{~S}\right.$ requires 353.1297).

Irradiation of $\mathrm{C} 4-\mathrm{H}$ resulted in a 7.6% increase in the adjacent methyl signal $\left(\mathrm{CH}_{3} \mathrm{CH}\right)$ and a 12.7% increase in the $\mathrm{C} 5-\mathrm{H}$ signal in the NOE difference spectrum. Irradiation of the methyl substituent at C3 (C$\mathrm{H}_{3} \mathrm{CH}$) resulted in a 4% increase in the signal due to the ortho hydrogens of the phenyl ring, a 4.1% increase in $\mathrm{C} 2-\mathrm{H}$, a 7.8% increase in $\mathrm{C} 4-\mathrm{H}$ and a 7.6% increse in $\mathrm{C} 3-\mathrm{H}$. Irradiation of $\mathrm{C} 3-\mathrm{H}$ resulted in a 12% increase in $\mathrm{C} 2-\mathrm{H}$ and an 8.4% increase in the adjacent methyl group $\left(\mathrm{CHCH}_{3}\right)$ in the NOE difference spectrum $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$.
(2R ${ }^{*}, 3 S^{*}, 4 S^{*}$)-2-Ethoxy-4-(ethoxycarbonyl)-3-methyl-1-(phenyl-sulfonyl)-1,2,3,4-tetrahydropyridine (39a-exo), Minor adduct 39a-exo: ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}, \mathrm{ppm}\right) 7.83(\mathrm{~m}, 2 \mathrm{H}$, aromatic), $7.52(\mathrm{~m}$, 3 H , aromatic), 6.57 (d, apparent triplet, $1 \mathrm{H}, \mathrm{C} 6-\mathrm{H}, J=1.3,7.5 \mathrm{~Hz}$), 5.16 (d, apparent triplet, $1 \mathrm{H}, \mathrm{C} 5-\mathrm{H}, J=1.5,7.5 \mathrm{~Hz}$), 4.99 (apparent $\mathrm{t}, 1 \mathrm{H}, \mathrm{C} 2-\mathrm{H}, J=1.2 \mathrm{~Hz}), 4.13\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.78(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{OCHHCH} 3), 3.70(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCHHCH} 3), 3.50(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 4-\mathrm{H}), 2.45(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{C} 3-\mathrm{H}), 1.23\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.2 \mathrm{~Hz}\right), 1.16(\mathrm{t}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}, J=7.1 \mathrm{~Hz}\right), 0.30\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}, J=7.0 \mathrm{~Hz}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}, \mathrm{ppm}\right) 173.1\left(\mathrm{CO}_{2} \mathrm{Et}\right), 140.6(\mathrm{C}$ aromatic), $133.4(\mathrm{CH}$ aromatic), $129.5(\mathrm{CH}$ aromatic), $127.5(\mathrm{CH}$ aromatic), $122.3(\mathrm{CH}, \mathrm{C} 6)$, $103.8(\mathrm{CH}, \mathrm{C} 5), 86.5(\mathrm{CH}, \mathrm{C} 2), 63.8\left(\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 60.9\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $38.3(\mathrm{CH}, \mathrm{C} 4), 32.0(\mathrm{CH}, \mathrm{C} 3), 15.1\left(\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.2\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $11.1\left(\mathrm{CH}_{3} \mathrm{CH}\right)$; IR (neat) $\nu_{\max } 2978,2928,1737,1701,1654,1448,1363$, $1337,1285,1242,1170,1108,1092,1054,1031,970,934,869,729 \mathrm{~cm}^{-1}$; EIMS m / e (relative intensity) 308 (14), 292 (base), 280 (23), 141 (29), 138 (16), 110 (25), 94 (91), 86 (41), 84 (22), 82 (27), 78 (11), 77 (90), 67 (10), 58 (30), 57 (20), 55 (13), 51 (28); CIMS (2-methylpropane) m / e (relative intensity) 308 ($\mathrm{M}+\mathrm{H}^{+}-\mathrm{EtOH}$, base); EIHRMS m / e $353.1297\left(\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{5} \mathrm{~S}\right.$ requires 353.1297).

Irradiation of the methyl substituent at $\mathrm{C} 3\left(\mathrm{CHCH}_{3}\right)$ resulted in a 4.8% increase in the $\mathrm{C} 3-\mathrm{H}$ signal, a 2.5% increase in the $\mathrm{C} 2-\mathrm{H}$ signal and a 4.1% increase in the signal for the ortho hydrogens of the phenyl ring in the NOE difference spectrum. Irradiation of $\mathrm{C} 3-\mathrm{H}$ resulted in a 6% increase in the signal due to the methyl substituent, at 18% increase in the $\mathrm{C} 4-\mathrm{H}$ signal and a 12.1% increase in the $\mathrm{C} 2-\mathrm{H}$ signal in the NOE difference spectrum $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$.
($2 R^{*}, 3 S^{*}, 4 R^{*}$)-2-Ethoxy-4-(ethoxycarbonyl)-3-methyl-1-(methyl-sulfonyl)- 1,2,3,4-tetrahydropyridine (39b-endo), Conditions: (E)-ethyl 1 -propenyl ether (3 equiv), 0.21 mmol scale, $43 \mathrm{~h}, 21^{\circ} \mathrm{C}$. Examination of crude ${ }^{1} \mathrm{H}$ NMR (300 MHz) showed a $2.2: 1$ mixture of endo/exo isomers (isolated 39b 91\%, 2.2:1 (endo/exo)). For pure 39b-endo: ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}, \mathrm{ppm}\right) 6.48(\mathrm{dd}, 1 \mathrm{H}, \mathrm{C} 6-\mathrm{H}, J=8.5,1.0 \mathrm{~Hz})$, $5.15(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 5-\mathrm{H}), 4.95(\mathrm{~d}, 1 \mathrm{H}, \mathrm{C} 2-\mathrm{H}, J=2.2 \mathrm{~Hz}), 4.14(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.52\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.01\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{3} \mathrm{SO}_{2}\right), 2.99(\mathrm{~m}$,
$1 \mathrm{H}, \mathrm{C} 3-\mathrm{H}), 2.67(\mathrm{~d}, 1 \mathrm{H}, \mathrm{C} 4-\mathrm{H}, J=5.5 \mathrm{~Hz}), 1.27\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right.$, $J=7.1 \mathrm{~Hz}), 1.10\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}, J=7.0 \mathrm{~Hz}\right), 0.99(\mathrm{~d}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3} \mathrm{CH}, J=7.2 \mathrm{~Hz}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}, \mathrm{ppm}\right) 172.9\left(\mathrm{CO}_{2} \mathrm{Et}\right)$, $122.2(\mathrm{CH}, \mathrm{C} 6), 103.1(\mathrm{CH}, \mathrm{C} 5), 85.9(\mathrm{CH}, \mathrm{C} 2), 63.7\left(\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $61.1\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 41.5(\mathrm{CH}, \mathrm{C} 4), 41.1\left(\mathrm{CH}_{3} \mathrm{SO}_{2}\right), 31.5(\mathrm{CH}, \mathrm{C} 3), 16.4$ $\left(\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 15.0\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 14.2\left(\mathrm{CH}_{3} \mathrm{CH}\right)$; IR (neat) $\nu_{\text {max }} 2978$, $1734,1718,1701,1696,1685,1654,1636,1559,1507,1473,1458,1340$, 1259, 1167, 1082, 1027, 998, 964, 933, 768, $728 \mathrm{~cm}^{-1}$; EIMS m/e (relative intensity) $291\left(\mathrm{M}^{+}, 4\right), 246(5), 230(15), 218(32), 172(13)$, 110 (14), 94 (base), 86 (45), 82 (18), 58 (37); CIMS (2-methylpropane) m / e (relative intensity) $246\left(\mathrm{M}+\mathrm{H}^{+}-\mathrm{EtOH}\right.$, base); EIHRMS m / e $291.1143\left(\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{NO}_{5} \mathrm{~S}\right.$ requires 291.1140).

Minor adduct 39b-exo could not be separated from 39b-endo. Diagnostic ${ }^{1} \mathrm{H}$ NMR signals utilized for the estimation of endo/exo ratio (by integration) for the minor cycloadduct are as follows: 5.24 (dt, 1 H , $\mathrm{C} 5-\mathrm{H}, J=8.5,1.5 \mathrm{~Hz}), 3.70\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}, J=7 \mathrm{~Hz}\right), 2.6(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{C} 3-\mathrm{H}), 0.82\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}, J=7.2 \mathrm{~Hz}\right)$.
($2 R^{*}, 3 R^{*}, 4 R^{*}$)-2-Ethoxy-4-(ethoxycarbonyl-3-phenyl-1-(phenyl-sulfonyl)-1,2,3,4-tetrahydropyridine (40 -endo). Conditions: (E)-1-eth-oxy-2-phenylethylene ${ }^{36 \mathrm{c}}$ (2.5 equiv), 0.29 mmol scale, $61 \mathrm{~h}, 21^{\circ} \mathrm{C}$. Examination of crude ${ }^{1} \mathrm{H}$ NMR (300 MHz) showed a $5: 1$ mixture of endo/exo isomers (isolated $4061 \%, 5: 1$ (endo/exo)). For pure 40 -endo: $\mathrm{mp} 109-110^{\circ} \mathrm{C}$ (EtOAc/hexane); ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}, \mathrm{ppm}\right)$ 7.4-6.9 (m, 10 H , aromatic), 6.67 (d apparent t, $1 \mathrm{H}, \mathrm{C} 6-\mathrm{H}, J=1.4$, 8.4 Hz), 5.45 (ddd, $1 \mathrm{H}, \mathrm{C} 5-\mathrm{H}, J=1.1,5.0,8.4 \mathrm{~Hz}$), 5.40 (dd, 1 H , $\mathrm{C} 2-\mathrm{H}, J=1.4,2.7 \mathrm{~Hz}), 4.15\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right.$ and $\left.\mathrm{C} 3-\mathrm{H}\right), 3.67(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.12(\mathrm{~d}, 1 \mathrm{H}, \mathrm{C} 4-\mathrm{H}, J=5.0 \mathrm{~Hz}), 1.28(\mathrm{t}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), \mathrm{l} .13\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right.$, ppm $) 172.7\left(\mathrm{CO}_{2} \mathrm{Et}\right), 139.9$ (C aromatic), 138.8 (C aromatic), 132.6 (CH aromatic), 129.2 (CH aromatic), 128.7 (CH aromatic), $127.7(\mathrm{CH}$ aromatic), $127.6(\mathrm{CH}$ aromatic), 126.8 (CH aromatic), $122.3(\mathrm{CH}, \mathrm{C} 6)$, $105.6(\mathrm{CH}, \mathrm{C} 5), 86.1(\mathrm{CH}, \mathrm{C} 2), 63.5\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 61.3\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $44.0(\mathrm{CH}, \mathrm{C} 4), 39.3(\mathrm{CH}, \mathrm{C} 3)$, $14.8\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right)$, $14.2\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right)$; IR (neat) $\nu_{\max } 2977,1735,1701,1696,1685,1654,1636,1560,1448,1363$, 1337, 1257, 1168, 1101, 1075, 1034, 934, 899, 753, $737 \mathrm{~cm}^{-1}$; EIMS m/e (relative intensity) $415\left(\mathrm{M}^{+}, 3\right), 369(11), 292(18), 274$ (21), 200 (11), 172 (35), 156 (base), 148 (53), 144 (36), 128 (11), 120 (23), 91 (24), 77 (73), 51 (16); CIMS (2-methylpropane) m / e (relative intensity) 370 $\left(\mathrm{M}+\mathrm{H}^{+}-\mathrm{EtOH}\right.$, base); ElHRMS m/e $415.1453\left(\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{5}\right.$ requires 415.1453). Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{5} \mathrm{~S}: \mathrm{C}, 63.60 ; \mathrm{H}, 6.06 ; \mathrm{N}, 3.37$. Found: C, 63.78; H, 6.42; N, 3.42.

A single-crystal X -ray structure determination confirmed the structure of 40 -endo. ${ }^{2 l \mathrm{c}}$
($2 R^{*}, 3 R^{*}, 4 S^{*}$)-2-Ethoxy-4-(ethoxycarbonyl)-3-phenyl-1-(phenyl-sulfonyl)-1,2,3,4-tetrahydropyridine (40-exo). Minor adduct 40 -exo: ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}, \mathrm{ppm}\right) 7.41-6.85(\mathrm{~m}, 10 \mathrm{H}$, aromatic), 6.63 (ddd, $1 \mathrm{H}, \mathrm{C} 6-\mathrm{H}, J=1.3,2.7,8.3 \mathrm{~Hz}$), 5.58 (d apparent t, $1 \mathrm{H}, \mathrm{C} 5-\mathrm{H}$, $J=1.6,8.3 \mathrm{~Hz}$), 5.36 (apparent t, $1 \mathrm{H}, \mathrm{C} 2-\mathrm{H}, J=1.3 \mathrm{~Hz}$), $3.93-3.71$ ($\mathrm{m}, 6 \mathrm{H}, \mathrm{C} 3-\mathrm{H}, \mathrm{C} 4-\mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), $1.26\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right.$, $J=7.0 \mathrm{~Hz}), 0.82\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}, J=7.1 \mathrm{~Hz}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $50 \mathrm{MHz}, \mathrm{ppm}) 172.3\left(\mathrm{CO}_{2} \mathrm{Et}\right), 140.0(\mathrm{C}$ aromatic), $136.9(\mathrm{C}$ aromatic), 132.7 (CH aromatic), 129.3 (CH aromatic), 128.6 (CH aromatic), 128.2 (CH aromatic), 127.6 (CH aromatic), 126.9 (CH aromatic), 123.3 (CH , C6), $105.8(\mathrm{CH}, \mathrm{C} 5), 87.0(\mathrm{CH}, \mathrm{C} 2), 63.9\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 60.76(\mathrm{OC}-$ $\left.\mathrm{H}_{2} \mathrm{CH}_{3}\right), 43.9(\mathrm{CH}, \mathrm{C} 4), 37.8(\mathrm{CH}, \mathrm{C} 3), 15.1\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 13.8(\mathrm{C}$. $\mathrm{H}_{3} \mathrm{CH}_{2} \mathrm{O}$); IR (neat) $\nu_{\text {max }} 2977,1735,1701,1697,1685,1654,1560$, $1497,1448,1363,1340,1267,1168,1098,1066,935,899,742,735 \mathrm{~cm}^{-1}$; ElMS m / e (relative intensity) $415\left(\mathrm{M}^{+}, 5\right), 370$ (27), 369 (27), 342 (15), 296 (14), 292 (44), 274 (24), 200 (18), 172 (30), 157 (10), 156 (99), 148 (base), 144 (13), 141 (14), 120 (53), 91 (17), 77 (29); CIMS (2methylpropane) m / e (relative intensity) $370\left(\mathrm{M}+\mathrm{H}^{+}-\mathrm{EtOH}\right.$, base); ElHRMS m/e $415.1453\left(\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{5} \mathrm{~S}\right.$ requires 415.1453$)$.
($2 R^{*}, 4 R^{*}$)-4-(Ethoxycarbonyl)-2-phenyl-1-(phenylsulfonyl)-1,2,3,4tetrahydropyridine (41 -endo). Conditions: styrene (2.5 equiv), 0.27 mmol scale, $45.5 \mathrm{~h}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 21^{\circ} \mathrm{C}, 13.3 \mathrm{kbar}$. Examination of the crude product by ${ }^{1} \mathrm{H}$ NMR (300 MHz) showed a $11: 1$ mixture of endo/exo isomers (isolated 41 -endo $48 \%, 11: 1$ (endo/exo)). For pure 41-endo: mp $120-122^{\circ} \mathrm{C}$ (ether/hexane); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}, \mathrm{ppm}\right) 7.5$ (d. 2 H , aromatic, $J=7.5 \mathrm{~Hz}$), $7.44(\mathrm{~m}, 3 \mathrm{H}$, aromatic), $7.13(\mathrm{~m}, 6 \mathrm{H}, 5$ H aromatic, $\mathrm{C} 6-\mathrm{H}$), 5.25 (dd, $1 \mathrm{H}, \mathrm{C} 5-\mathrm{H}, J=5.7,9.4 \mathrm{~Hz}$), 5.24 (broad (overlapping) s, $1 \mathrm{H}, \mathrm{C} 2-\mathrm{H}$), $3.48\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.86(\mathrm{t}, 1 \mathrm{H}$, $\mathrm{C} 4-\mathrm{H}, J=5.7 \mathrm{~Hz}), 2.72\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{C} 3-\mathrm{H}_{\mathrm{eq}}, J=13.7 \mathrm{~Hz}\right), 1.80$ (ddd, 1 $\left.\mathrm{H}, \mathrm{C} 3-\mathrm{H}_{\mathrm{ax}}, J=5.7,6.8,13.7 \mathrm{~Hz}\right), 0.91\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.1\right.$ Hz); diagnostic ${ }^{1} \mathrm{H}$ NMR signals utilized for the estimation of the endo/exo ratio (by integration) for the minor cycloadduct 4.10 ($\mathrm{q}, 2 \mathrm{H}$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7 \mathrm{~Hz}\right), 2.21\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 3-\mathrm{H}_{\mathrm{oq}}\right), 1.68\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 3-\mathrm{H}_{\mathrm{ax}}\right)$, $1.20\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7 \mathrm{~Hz}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right.$, ppm) $171.9\left(\mathrm{CO}_{2} \mathrm{Et}\right), 139.5$ (C aromatic), 138.3 (C aromatic), 133.3 (CH aromatic), 129.4 (CH aromatic), $128.3(\mathrm{CH}$ aromatic), $127.6(\mathrm{CH}$ aromatic), 127.3 (CH aromatic), 126.8 (CH aromatic), 125.6 ($\mathrm{CH}, \mathrm{C} 6$),
$105.9(\mathrm{CH}, \mathrm{C} 5), 60.9(\mathrm{CH}, \mathrm{C} 2), 55.3\left(\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 34.8(\mathrm{CH}, \mathrm{C} 4)$, $29.8\left(\mathrm{CH}_{2}, \mathrm{C} 3\right), 13.7\left(\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, IR (neat) $\nu_{\max } 2905,2724,2672$, $1460,1378,1314,1188,1172,1160,1104,1076,1028,874,812,744$, $722,702 \mathrm{~cm}^{-1}$; EIMS m / e (relative intensity) $371\left(\mathrm{M}^{+}, 27\right), 299$ (14), 298 (99), 230 (8), 157 (33), 156 (base), 141 (12), 129 (8), 104 (15), 80 (29), 78 (10), 77 (58), 51 (10); CIMS (2-methylpropane) m / e (relative intensity) $372\left(\mathrm{M}+\mathrm{H}^{+}\right.$, base $)$; EIHRMS m/e $371.1191\left(\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{~S}\right.$ requires 371.1191). Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{~S}: \mathrm{C}, 64.67$; $\mathrm{H}, 5.70$; $\mathrm{N}, 3.77$. Found: C, 64.35; H, 5.64; N, 3.64.
($2 R^{*}, 3 R^{*}, 4 R^{*}$)-2-Ethoxy-4-(ethoxycarbonyl)-3-methyl-1-(phenyl-sulfonyl)-1,2,3,4-tetrahydropyridine (42a-endo). Conditions: (Z)-ethyl-1-propenyl ether (3.8 equiv), 0.21 mmol scale, $69 \mathrm{~h}, 21^{\circ} \mathrm{C}$. Examination of the crude product by ${ }^{1} \mathrm{H}$ NMR (300 MHz) showed a $25: 1$ mixture of endo/exo isomers (isolated 42a-endo 48\%, 22.7:1 (endo/exo)). For pure 42a-endo: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}, \mathrm{ppm}\right) 7.77$ (d, 2 H , aromatic, $J=7.3 \mathrm{~Hz}), 7.56(\mathrm{~m}, 3 \mathrm{H}$, aromatic), $6.62(\mathrm{~d}, 1 \mathrm{H}, \mathrm{C} 6 \cdot \mathrm{H}, J$ $=8.1 \mathrm{~Hz}), 5.19(\mathrm{dd}, 1 \mathrm{H}, \mathrm{C} 5-\mathrm{H}, J=5.5,8.1 \mathrm{~Hz}), 4.96($ broad s, 1 H , $\mathrm{C} 2-\mathrm{H}), 4.12\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.80\left(\mathrm{~m}, \mathrm{OCH} \mathrm{HCH}_{3}\right), 3.51(\mathrm{~m}, 1$ $\mathrm{H}, \mathrm{OCHHCH} 3$), 2.72 (apparent triplet, $1 \mathrm{H}, \mathrm{C} 4-\mathrm{H}, J=5.5 \mathrm{~Hz}$), 1.44 (m, $1 \mathrm{H}, \mathrm{C} 3-\mathrm{H}), 1.23\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.2 \mathrm{~Hz}\right), 1.20(\mathrm{~d}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3} \mathrm{CH}, J=7.1 \mathrm{~Hz}\right), 1.09\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}, J=7.0 \mathrm{~Hz}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}, \mathrm{ppm}\right) 171.6\left(\mathrm{CO}_{2} \mathrm{Et}\right), 139.8(\mathrm{C}$ aromatic), $133.3(\mathrm{CH}$ aromatic), $129.7(\mathrm{CH}$ aromatic), $127.0(\mathrm{CH}$ aromatic), $123.1(\mathrm{CH}, \mathrm{C} 6)$, $109.1(\mathrm{CH}, \mathrm{C} 5), 85.7(\mathrm{CH}, \mathrm{C} 2), 64.0\left(\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 60.6\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $39.5(\mathrm{CH}, \mathrm{C} 4), 35.3(\mathrm{CH}, \mathrm{C} 3), 15.5\left(\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.6\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $14.2\left(\mathrm{CHCH}_{3}\right)$; IR (neat) $\nu_{\max } 2977,2928,1724,1701,1654,1448,1350$, 1311, 1233, 1173, 1079, 1017, 981, 756, $725 \mathrm{~cm}^{-1}$; EIMS m / e (relative intensity) 353 ($\mathrm{M}^{+}, 6$), 308 (31), 293 (18), 292 (base), 280 (31), 141 (19), 138 (14), 110 (8), 94 (96), 86 (23), 82 (20), 77 (57), 58 (24), 57 (12); CIMS (2-methylpropane) m / e (relative intensity) $308\left(\mathrm{M}+\mathrm{H}^{+}\right.$ - EtOH , base); EIHRMS $m / e 353.1297\left(\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{5} \mathrm{~S}\right.$ requires 353.1297).

Irradiation of $\mathrm{C} 4-\mathrm{H}$ resulted in a 13% increase in the $\mathrm{C} 3-\mathrm{H}$ signal and an 11% increase in the $\mathrm{C} 5-\mathrm{H}$ signal in the NOE difference spectrum $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right)$

Base-Catalyzed Epimerization of ($2 R^{*}, 3 R^{*}, 4 R^{*}$)-2-Ethoxy-4-(eth-oxycarbonyl)-3-methyl-1-(phenyIsulfonyl) $-1,2,3,4$-tetrahydropyridine (42a-endo): Preparation of ($2 R^{*}, 3 R^{*}, 4 S^{*}$)-2-Ethoxy-4-(ethoxy-carbonyl)-3-methyl-1-(phenylsulfonyl)-1,2,3,4-tetrahydropyridine. A solution of 42 a -endo ($4.1 \mathrm{mg}, 0.12 \mathrm{mmol}$) in dry benzene (0.6 mL) was treated with a solution of DBU (2 M in benzene, $6 \mu \mathrm{~L}, 1$ equiv), and the mixture was stirred at $21^{\circ} \mathrm{C}$ for 2 h . The resulting reaction mixture was diluted with ether (8 mL) and washed with 2% aqueous hydrochloric acid $(2 \times 5 \mathrm{~mL})$. The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. 'H NMR (300 Mhz) of the crude product revealed a mixture of the starting material and 42a-exo (1:12): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}, \mathrm{ppm}) 7.70(\mathrm{~d}, 2 \mathrm{H}$, aromatic, $J=7.3 \mathrm{~Hz}), 7.52(\mathrm{~m}, 3 \mathrm{H}$, aromatic), 6.57 (dd, $1 \mathrm{H}, \mathrm{C} 6-\mathrm{H}, J=1.3,8 \mathrm{~Hz}$), $5.04(\mathrm{dd}, 1 \mathrm{H}, \mathrm{C} 5-\mathrm{H}, J=$ $2.1,8 \mathrm{~Hz}), 4.95$ (broad s, $1 \mathrm{H}, \mathrm{C} 2-\mathrm{H}), 4.09\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, J=\right.$ $7.1 \mathrm{~Hz}), 3.84(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCHHCH} 3), 3.59\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH} H \mathrm{CH}_{3}\right), 2.99$ (dt, $1 \mathrm{H}, \mathrm{C} 4-\mathrm{H}, J=2.1,11.4 \mathrm{~Hz}), 1.39(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 3-\mathrm{H}), 1.21(\mathrm{t}, 3 \mathrm{H}$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.1 \mathrm{~Hz}\right), 1.17\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}, J=7.0 \mathrm{~Hz}\right), 0.94$ (d, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}, J=6.7 \mathrm{~Hz}$).
($2 R^{*}, 3 R^{*}, 4 R^{*}$)-2-Ethoxy-4-(ethoxycarbonyl)-3-methyl-1-(methyl-sulfonyl)-1,2,3,4-tetrahydropyridine (42 b -endo). Conditions: (Z) -ethyl-1-propenyl ether (4 equiv), 0.16 mmol scale, $66 \mathrm{~h}, 21^{\circ} \mathrm{C}$. Examination of crude ${ }^{1} \mathrm{H}$ NMR (300 MHz) showed a single diastereomer (isolated $\mathbf{4 2 b} 36 \%>20: 1$ (endo/exo)). For pure 42b-endo: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}, \mathrm{ppm}\right) 6.52(\mathrm{~d}, 1 \mathrm{H}, \mathrm{C} 6-\mathrm{H}, J=8.50 \mathrm{~Hz}), 5.19$ (dd, $1 \mathrm{H}, \mathrm{C} 5-\mathrm{H}, J=8.6,5.30 \mathrm{~Hz}), 5.02($ broad $\mathrm{s}, 1 \mathrm{H}, \mathrm{C} 2-\mathrm{H}), 4.11(\mathrm{~m}, 2$ $\left.\mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.79(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCHHCH} 3), 3.54(\mathrm{~m}, 1 \mathrm{H}$, OCHHCH_{3}), $2.99(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 4-\mathrm{H}), 2.95\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{SO}_{2}\right), 2.18(\mathrm{~m}, 1$ $\mathrm{H}, \mathrm{C} 3-\mathrm{H}), 1.34\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}, J=7.24 \mathrm{~Hz}\right), 1.26\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right.$, $J=7.05 \mathrm{~Hz}), 1.13\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}, J=7.1 \mathrm{~Hz}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $50 \mathrm{MHz}, \mathrm{ppm}) 171.9\left(\mathrm{CO}_{2} \mathrm{Et}\right), 123.3(\mathrm{CH}, \mathrm{C} 6), 107.3(\mathrm{CH}, \mathrm{C} 5), 86.2$ $(\mathrm{CH}, \mathrm{C} 2), 65.5\left(\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 60.8\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 40.9(\mathrm{CH}, \mathrm{C} 4), 39.9$ $\left(\mathrm{CH}_{3} \mathrm{SO}_{2}\right), 29.9(\mathrm{CH}, \mathrm{C} 3), 15.2\left(\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 15.1\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 14.4$ $\left(\mathrm{CH}_{3} \mathrm{CH}\right) ; 1 \mathrm{R}$ (neat) $\nu_{\max } 2977,2929,1718,1654,1637,1559,1541$, $1508,1458,1374,1340,1235,1169,1121,1068,1030,961,922,765$, $734 \mathrm{~cm}^{-1}$; ElMS m/e (relative intensity) $291\left(\mathrm{M}^{+}, 3\right), 246(10), 230(46)$, $218(33), 110(15), 95(12), 94$ (base), 86 (57), 82 (18), 58 (43), 57 (23), 55 (16); ClMS (2-methylpropane) m / e (relative intensity) $246\left(\mathrm{M}+\mathrm{H}^{+}\right.$ - EtOH, base); ElHRMS m/e $291.1142\left(\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{NO}_{5} \mathrm{~S}\right.$ requires 291.1140).
($2 S^{*}, 3 R^{*}, 4 S^{*}$)-2-Ethoxy-4-(ethoxycarbonyl)-3-phenyl-1-(phenyl-sulfonyl)-1,2,3,4-tetrahydropyridine (43-endo). Conditions: (Z)-1-eth-oxy-2-phenylethylene ${ }^{3 \mathrm{fd}}$ (2.5 equiv), 0.24 mmol scale, $49.5 \mathrm{~h}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, $21^{\circ} \mathrm{C}, 13.3$ kbar. Examination of the crude product by ${ }^{1} \mathrm{H} \mathrm{NMR}(300$ MHz) showed a $2.2: 1$ mixture of endo/exo isomers, (isolated $\mathbf{4 3} 42 \%$, 2.2:1 (endo/exo)). For pure 43-endo: $\mathrm{mp} 91-93^{\circ} \mathrm{C}$ (ether/hexane); ${ }^{1} \mathrm{H}$

NMR (CDCl $\left.{ }_{3}, 300 \mathrm{MHz}, \mathrm{ppm}\right) 7.73(\mathrm{~m}, 2 \mathrm{H}$, aromatic), 7.57 (m, 1 H , aromatic), $7.50(\mathrm{~m}, 2 \mathrm{H}$, aromatic), $7.28(\mathrm{~m}, 3 \mathrm{H}$, aromatic), 7.17 (m, 2 H , aromatic), 6.70 (d apparent t, $1 \mathrm{H}, \mathrm{C} 6-\mathrm{H}, J=1.4,8.2 \mathrm{~Hz}$) 5.48 (t, 1 H, C2-H, $J=1.1 \mathrm{~Hz}$), 5.37 (dd, $1 \mathrm{H}, \mathrm{C} 5-\mathrm{H}, J=5.6,8.2 \mathrm{~Hz}$), 3.94 $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{OCH} \mathrm{HCH}_{3}\right), 3.87\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.69(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{OCHHCH}_{3}\right), 3.07(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 4-\mathrm{H}), 2.50(\mathrm{~d}, 1 \mathrm{H}, \mathrm{C} 3-\mathrm{H}, J=5.6 \mathrm{~Hz})$, $1.23\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}, J=7.0 \mathrm{~Hz}\right), 0.93\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}, J=7.1\right.$ $\mathrm{Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}, \mathrm{ppm}\right) 170.9\left(\mathrm{CO}_{2} \mathrm{Et}\right), 139.4(\mathrm{C}$ aromatic), 133.5 (C aromatic), 129.8 (CH aromatic), 128.8 (CH aromatic), 128.3 (CH aromatic), 127.3 (CH aromatic), 127.1 (CH aromatic), 123.0 ($\mathrm{CH}, \mathrm{C} 6$), $110.1(\mathrm{CH}, \mathrm{C} 5), 84.0(\mathrm{CH}, \mathrm{C} 2), 63.6\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 60.4$ $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 45.9(\mathrm{CH}, \mathrm{C} 4), 41.3(\mathrm{CH}, \mathrm{C} 3), 14.8\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 13.7$ $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right.$); IR (neat) $\nu_{\text {max }} 3064,2978,2928,1734,1718,1701,1696$, $1685,1670,1654,1647,1636,1559,1540,1507,1496,1473,1457,1448$, 1395, 1340, 1261, 1171, 1136, 1096, 1056, 927, 725, $689 \mathrm{~cm}^{-1}$; EIMS m / e (relative intensity) 369 (15), 292 (35), 274 (18), 200 (11), 172 (28), 151 (15), 156 (base), 148 (75), 144 (25), 141 (17), 129 (11), 128 (14), 127 (10), 120 (40), 115 (13), 105 (29), 91 (43), 78 (12), 77 (84), 51 (15); CIMS (2-methylpropane) m / e (relative intensity) 370 ($\mathrm{M}+\mathrm{H}^{+}-$ EtOH, base); EIHRMS $m / e 415.1445\left(\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{5} \mathrm{~S}\right.$ requires 415.1453). Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{5} \mathrm{~S}: \mathrm{C}, 63.60 ; \mathrm{H}, 6.06 ; \mathrm{N}, 3.37$. Found: C , 63.22; H, 5.94; N, 3.62.

Irradiation of $\mathrm{C} 4-\mathrm{H}$ resulted in a 6.5% increase in the signal for the ortho hydrogens of the phenyl substituent at C 3 , a 13.3% increase in the signal for $\mathrm{C} 5-\mathrm{H}$, and a 10.7% increase in the signal for $\mathrm{C} 3-\mathrm{H}$. Irradiation of $\mathrm{C} 3-\mathrm{H}$ resulted in a 4.1% increase in the signal for the ortho hydrogens of the phenylsulfonyl substituent at N 1 , a 16.4% increase in the ortho hydrogens of the phenyl substituent at C 3, a 8.4% increase in the $\mathrm{C} 2-\mathrm{H}$ signal, and a 14.4% increase in the $\mathrm{C} 4-\mathrm{H}$ signal in the NOE difference spectrum ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$).
($2 R^{*}, 3 S^{*}, 4 S^{*}$)-2-Ethoxy-4-(ethoxycarbonyl)-3-phenyl-1-(phenylsulfonyl) $1,2,3,4$-tetrahydropyridine (43-exo), Minor product 43 -exo: ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}, \mathrm{ppm}\right) 7.34-6.89(\mathrm{~m}, 10 \mathrm{H}$, aromatic), $6.59(\mathrm{~d}$, apparent $\mathrm{t}, 1 \mathrm{H}, \mathrm{C} 6-\mathrm{H}, J=1.5,8.5 \mathrm{~Hz}$), 5.39 (ddd, $1 \mathrm{H}, \mathrm{C} 5-\mathrm{H}, J=1.2$, $5.1,8.5 \mathrm{~Hz}), 5.33(\mathrm{dd}, 1 \mathrm{H}, \mathrm{C} 2-\mathrm{H}, J=1.5,2.8 \mathrm{~Hz}), 4.09(\mathrm{~m}, 3 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$ and $\mathrm{C} 3-\mathrm{H}$), $3.61\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right.$), 3.05 (d, $1 \mathrm{H}, \mathrm{C} 4-\mathrm{H}$, $J=5.1 \mathrm{~Hz}), 1.21\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.06\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}, \mathrm{ppm}\right) 172.7\left(\mathrm{CO}_{2} \mathrm{Et}\right), 140.0$ (C aromatic), 138.8 (C aromatic), 132.6 (CH aromatic), 129.2 (CH aromatic), 128.9 (CH aromatic), 128.5 (CH aromatic), 127.7 (CH aromatic), 127.6 (CH aromatic), 126.8 (CH aromatic), 123.3 (CH, C6), $105.6(\mathrm{CH}, \mathrm{C} 5$), 86.1 $(\mathrm{CH}, \mathrm{C} 2), 63.6\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 61.3\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 44.1(\mathrm{CH}, \mathrm{C} 4), 39.3$ ($\mathrm{CH}, \mathrm{C} 3$), $14.9\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 14.2\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$; IR (neat) $\nu_{\text {max }} 2977$, 1735, 1701, 1697, 1685, 1654, 1448, 1363, 1340, 1260, 1170, 1101, 933, $800,754,737 \mathrm{~cm}^{-1}$; EIMS m/e (relative intensity) $415\left(\mathrm{M}^{+}, 3\right), 369$ (15), 342 (32), 292 (19), 274 (41), 200 (10), 172 (28), 156 (84), 148 (47), 144 (27), 141 (15), 128 (11), 120 (27), 105 (56), 91 (30), 78 (11), 77 (base), 51 (19); CIMS (2-methylpropane) m/e (relative intensity) $370\left(\mathrm{M}+\mathrm{H}^{+}\right.$ - EtOH, base); ElHRMS m/e $415.1453\left(\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{5} \mathrm{~S}\right.$ requires 415.1453).

Irradiation of $\mathrm{C} 4-\mathrm{H}$ resulted in a 17.5% signal increase in the ortho hydrogens of the phenyl substituent at C3, a 10% increase in the $\mathrm{C} 5-\mathrm{H}$ signal, and a 7.3% increase in the $\mathrm{C} 3-\mathrm{H}$ signal in the NOE difference spectrum ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$).
($2 R^{*}, 4 R^{*}$)-4-(Ethoxycarbonyl) $\mathbf{3 - m e t h y l i d e n e - 2 - m e t h o x y - 1 - (p h e n y l - ~}$ sulfonyl)-1,2,3,4-tetrahydropyridine (44). Conditions: 1 -methoxy-1,2propadiene ${ }^{366}$ (5 equiv), 0.16 mmol scale, $82 \mathrm{~h}, 0^{\circ} \mathrm{C}$; examination of the crude product by ${ }^{1} \mathrm{H}$ NMR (300 MHz) revealed no trace of the exo cycloadduct, 44: 56%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}, \mathrm{ppm}\right) 7.78$ (d, 2 H , $J=7.5 \mathrm{~Hz}$, aromatic), $7.52(\mathrm{~m}, 3 \mathrm{H}$, aromatic), 6.59 (d, $1 \mathrm{H}, \mathrm{C} 6-\mathrm{H}, J$ $=8.1 \mathrm{~Hz}), 5.30(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} 2-\mathrm{H}), 5.26(\mathrm{dd}, 1 \mathrm{H}, \mathrm{C} 5-\mathrm{H}, J=3.4,8.1 \mathrm{~Hz})$, $5.10\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2}, J=9.2 \mathrm{~Hz}\right.$), $4.13\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.45$ (d, $1 \mathrm{H}, \mathrm{C} 4-\mathrm{H}, J=3.4 \mathrm{~Hz}$), $\left.3.32(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH})_{3}\right), 1.21\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{C}-\right.$ $\left.\mathrm{H}_{2} \mathrm{CH}_{3}, J=7.1 \mathrm{~Hz}\right)$: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}, \mathrm{ppm}\right) 170.6\left(\mathrm{CO}_{2} \mathrm{Et}\right)$, 139.9 (C aromatic), 136.3 (C, C3), $133.5(\mathrm{CH}$ aromatic), $129.5(\mathrm{CH}$ aromatic), $127.5\left(\mathrm{CH}\right.$ aromatic), $123.4(\mathrm{CH}, \mathrm{C} 6), 118.5\left(\mathrm{C}=\mathrm{CH}_{2}\right)$, 107.3 ($\mathrm{CH}, \mathrm{C} 5$), $87.4(\mathrm{CH}, \mathrm{C} 2), 61.7\left(\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 55.2\left(\mathrm{OCH}_{3}\right), 43.5$ ($\mathrm{CH}, \mathrm{C} 4$), $14.2\left(\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$; IR (neat) $\nu_{\text {max }} 3278,3070,2936,1730$, 1654, 1448, 1392, 1362, 1171, 1129, 1098, 1076, 1023, 998, 942, 907, $874,757,727,689 \mathrm{~cm}^{-1}$; ElMS m / e (relative intensity) $337\left(\mathrm{M}^{+}, 3\right), 306$ (21), 265 (11), 264 (85), 150 (19), 141 (20), 134 (13), 123 (12), 122 (22), 119 (14), 108 (29), 94 (11), 93 (17), 92 (57), 78 (21), 77 (base), 74 (13), 65 (25), 59 (47), 57 (10), 53 (15), 51 (43), 50 (18); C1MS (2-methylpropane) m / e (relative intensity) $338\left(\mathrm{M}+\mathrm{H}^{+}, 10\right), 306(\mathrm{M}$ $+\mathrm{H}^{+}-\mathrm{CH}_{3} \mathrm{OH}$, base); EIHRMS $m / e 337.0986\left(\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{5} \mathrm{~S}\right.$ requires 337.0984).
($2 R^{*}, 3 R^{*}, 4 R^{*}$)-3-Acetoxy-2-(benzyloxy)-4-(ethoxycarbonyl)-1-(phenylsulfoulyl)-1,2,3,4-tetrahydropyridine (45-endo). Conditions: (Z)-1-acetoxy-2-(benzyloxy)ethylene ${ }^{36 f}$ ($110 \mathrm{mg}, 0.57 \mathrm{mmol}, 3.1$ equiv) $13.3 \mathrm{kbar}, 49.5 \mathrm{~h}, 21^{\circ} \mathrm{C}$. Examination of the crude material by ${ }^{\prime} \mathrm{H}$

NMR (300 MHz) showed a single diastereomer. Isolated 45 -endo (35.9 $\mathrm{mg}, 83.9 \mathrm{mg}$ theoretical, 42%) $\mathrm{mp} 90-92^{\circ} \mathrm{C}$ (white needles, ether/ hexane); ' H NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}, \mathrm{ppm}\right) 7.80(\mathrm{~d}, 2 \mathrm{H}$, aromatic, J $=7.4 \mathrm{~Hz}), 7.59(\mathrm{~m}, 1 \mathrm{H}$, aromatic), $7.51(\mathrm{~m}, 2 \mathrm{H}$, aromatic), $7.36-7.28$ ($\mathrm{m}, 5 \mathrm{H}$, aromatic), 6.64 (d, $1 \mathrm{H}, \mathrm{C} 6-\mathrm{H}, J=8.2 \mathrm{~Hz}$), 5.32 (d, 1 H , $\mathrm{C} 2-\mathrm{H}, J=1.6 \mathrm{~Hz}$), 5.14 (dd, $1 \mathrm{H}, \mathrm{C} 5-\mathrm{H}, J=5.4,8.2 \mathrm{~Hz}$), 4.81 (d, 1 $\mathrm{H}, \mathrm{OCH} H \mathrm{Ph}, J=12 \mathrm{~Hz}), 4.68(\mathrm{~d}, 1 \mathrm{H}, \mathrm{OC} H \mathrm{HPh}, J=12 \mathrm{~Hz}$), 4.31 (dd, $1 \mathrm{H}, \mathrm{C} 3-\mathrm{H}, J=2.3,7.3 \mathrm{~Hz}$), $4.00(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCHHCH}), 3.85(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{OCHHCH}), 3.43(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 4-\mathrm{H}), 2.07\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 1.08$ ($\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}$); diagnostic ${ }^{1} \mathrm{H}$ NMR signals utilized for the determination of endo/exo ratio (by integration) for the minor cycloadduct were 6.82 (dt, $1 \mathrm{H}, \mathrm{C} 6-\mathrm{H}, J=8.4,1.0 \mathrm{~Hz}$), 2.92 (d, $1 \mathrm{H}, \mathrm{C} 4-\mathrm{H}, J=7.0$ Hz); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}, \mathrm{ppm}\right) 170.9\left(\mathrm{CO}_{2} \mathrm{Et}\right), 169.5$ (OCOCH_{3}), 139.4 (C aromatic), 137.8 (C aromatic), 133.9 (CH aromatic), 130.0 (CH aromatic), 128.6 (CH aromatic), 128.3 (CH aromatic), 128.1 (CH aromatic), 127.2 (CH aromatic), 123.2 ($\mathrm{CH}, \mathrm{C} 6$), 106.1 (CH, C5), $82.1(\mathrm{CH}, \mathrm{C} 2), 70.8\left(\mathrm{PhCH}_{2} \mathrm{O}\right), 70.3(\mathrm{CH}, \mathrm{C} 3), 61.2\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 37.5$ $(\mathrm{CH}, \mathrm{C} 4), 21.1\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)$, $14.1\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right)$; IR (neat) $\nu_{\text {max }} 3065$, 2937, 1734, 1701, 1696, 1685, 1654, 1636, 1559, 1507, 1497, 1473, 1448, 1363, 1312, 1231, 1172, 1102, $1066,908,731 \mathrm{~cm}^{-1}$; EIMS m / e (relative intensity) 292 (17), 220 (3), 141 (4), 91 (base), 77 (23), 65 (5), 51 (5); CIMS (2-methylpropane) m / e (relative intensity) 352 ($\mathrm{M}+\mathrm{H}^{+}-$ $\mathrm{HOCH}_{2} \mathrm{Ph}$, base); EIHRMS m/e $459.1352\left(\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{NO}_{7} \mathrm{~S}\right.$ requires 459.1352).

A single-crystal X-ray structure determination confirmed the structure of 45 -endo. ${ }^{21 c}$
($2 R^{*}, 3 S^{*}, 4 R^{*}$)-3-Acetoxy-2-(benzyloxy)-4-(ethoxycarbonyl)-1-(phenylsulfonyl)-1,2,3,4-tetrahydropyridine (46-endo). Conditions: (E)-1-acetoxy-2-(benzyloxy)ethylene ${ }^{36 f}$ (3 equiv), 0.09 mmol scale, 135 $\mathrm{h}, 21^{\circ} \mathrm{C}$. Examination of the crude product by ${ }^{\mathrm{l}} \mathrm{H}$ NMR (300 MHz) showed a 2.4:1 mixture of endo/exo isomers (isolated $\mathbf{4 6} 71 \%$, 2.4:1 (endo/exo)). For pure 46 -endo: ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}, \mathrm{ppm}$) 7.87 (d, 2 H , aromatic), 7.49 (m, 3 H , aromatic), 7.19 ($\mathrm{m}, 5 \mathrm{H}$, aromatic), 6.77 (d, $1 \mathrm{H}, \mathrm{C} 6-\mathrm{H}, J=8.3 \mathrm{~Hz}$), $5.64(\mathrm{t}, 1 \mathrm{H}, \mathrm{C} 3-\mathrm{H}, J=1.3$ $\mathrm{Hz}), 5.34(\mathrm{~d}, 1 \mathrm{H}, \mathrm{C} 2-\mathrm{H}, J=2.6 \mathrm{~Hz}), 5.19(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 5-\mathrm{H}), 4.66(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{OCHHPh}, J=11.7 \mathrm{~Hz}), 4.54(\mathrm{~d}, 1 \mathrm{H}, \mathrm{OCH} H \mathrm{Ph}, J=11.7 \mathrm{~Hz})$, $3.85\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.91(\mathrm{~d}, 1 \mathrm{H}, \mathrm{C} 4-\mathrm{H}, J=4.7 \mathrm{~Hz}), 1.33(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{OCOCH} 3$), $0.99\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.1 \mathrm{~Hz}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}, \mathrm{ppm}\right) 170.1(\mathrm{CO}), 168.4(\mathrm{CO}), 140.6$ (C aromatic), 137.5 (C aromatic), 133.3 (CH aromatic), 129.7 (CH aromatic), 128.6 (CH aromatic), 128.1 (CH aromatic), $127.40(\mathrm{CH}$ aromatic), 126.8 (CH aromatic), 122.6 ($\mathrm{CH}, \mathrm{C} 6$), $103.8(\mathrm{CH}, \mathrm{C} 5), 81.1(\mathrm{CH}, \mathrm{C} 2), 70.4$ $\left(\mathrm{OCH}_{2} \mathrm{Ph}\right), 67.4(\mathrm{CH}, \mathrm{C} 3), 61.5\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 40.6(\mathrm{CH}, \mathrm{C} 4), 20.4$ $\left(\mathrm{OCOCH}_{3}\right), 13.9\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$; IR (neat) $\nu_{\text {max }} 2927,1741,1701,1697$, $1685,1654,1447,1369,1345,1229,1172,1072,1030,912,741 \mathrm{~cm}^{-1}$; EIMS m / e (relative intensity) 292 (57), 157 (15), 141 (26), 93 (16), 91 (base), 78 (10), 77 (79), 51 (31); CIMS (2-methylpropane) m / e (relative intensity) $352\left(\mathrm{M}+\mathrm{H}^{+}-\mathrm{PhCH}_{2} \mathrm{OH}\right.$, base); CIHRMS m/e 460.1412 $\left(\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{NO}_{7} \mathrm{~S}\right.$ requires 460.1430).
($2 R^{*}, 3 S^{*}, 4 S^{*}$)-3-Acetoxy-2-(benzyloxy)-4-(ethoxycarbonyl)-1-(phenylsulfonyl)-1,2,3,4-tetrahydropyridine (46-exo). Minor adduct 46exo: ' H NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}, \mathrm{ppm}\right) 7.81$ (d, 2 H , aromatic, 7.3 Hz), $7.52(\mathrm{~m}, 3 \mathrm{H}$, aromatic), $7.33(\mathrm{~m}, 5 \mathrm{H}$, aromatic), $6.83(\mathrm{~d}, 1 \mathrm{H}, \mathrm{C} 6-\mathrm{H}$, $J=7.9 \mathrm{~Hz}$), $5.37-5.31(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C} 2-\mathrm{H}, \mathrm{C} 3-\mathrm{H}, \mathrm{C} 5-\mathrm{H}), 4.92(\mathrm{~d}, 1 \mathrm{H}$, OCH $H \mathrm{Ph}, J=11.7 \mathrm{~Hz}$), $4.75(\mathrm{~d}, 1 \mathrm{H}, \mathrm{OC} H \mathrm{HPh}, J=11.7 \mathrm{~Hz}), 4.12$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.62(\mathrm{t}, 1 \mathrm{H}, \mathrm{C} 4-\mathrm{H}, J=2.6 \mathrm{~Hz}), 1.23(\mathrm{~s}, 3 \mathrm{H}$, OCOCH ${ }_{3}$), $1.18\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 50 \mathrm{MHz}$, ppm) 170.3 (CO), 170.2 (CO), 140.5 (C aromatic), 137.6 (C aromatic), 133.4 (CH aromatic), 129.8 (CH aromatic), 128.8 (CH aromatic), 128.3 (CH aromatic), 127.5 (CH aromatic), 122.9 (CH, C6), 103.3 (CH, C5), $81.3(\mathrm{CH}, \mathrm{C} 2), 70.5\left(\mathrm{OCH}_{2} \mathrm{Ph}\right), 65.7(\mathrm{CH}, \mathrm{C} 3), 61.4\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 38.6$ (CH, C4), $20.1\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)$, $14.2\left(\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$; IR (neat) $\nu_{\text {max }}$ 2926, 1735, 1701, 1697, 1685, 1676, 1654, 1649, 1618, 1577, 1561, 1555, 1497, 1449, 1370, 1234, 1170, 1038, 956, $915 \mathrm{~cm}^{-1}$; EIMS m / e (relative intensity) 293 (2), 292 (16), 220 (2), 141 (7), 105 (2), 96 (2), 92 (7), 91 (base), 79 (2), 78 (4), 77 (28); CIMS (2 -methylpropane) m / e (relative intensity) $460\left(\mathrm{M}+\mathrm{H}^{+}, 16\right), 352\left(\mathrm{M}+\mathrm{H}^{+}-\mathrm{PhCH}_{2} \mathrm{OH}\right.$, base $)$; E1HRMS $m / e 459.1359\left(\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{NO}_{7} \mathrm{~S}\right.$ requires 459.1352$)$.
($2 R^{*}, 4 R^{*}$)-4-(Ethoxycarbonyl)-2-(4'-methoxyphenyl)-1-(phenyl-sulfonyl)- $1,2,3,4$-tetrahydropyridine (47 -endo). Conditions: 4 -vinyl anisole (5 equiv), 0.27 mmol scale, $46 \mathrm{~h}, 21^{\circ} \mathrm{C}$. Examination of crude product by 'H NMR (300 MHz) showed a $33: 1$ mixture of endo/exo isomers (isolated $4763 \%, 33: 1$ (endo/exo)). For pure $47-$ endo: ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}, \mathrm{ppm}\right) 7.72(\mathrm{~m}, 2 \mathrm{H}$, aromatic), 7.53 (m, 1 H , aromatic), 7.44 (m, 2 H , aromatic), $7.04(\mathrm{~m}, 3 \mathrm{H}, 2 \mathrm{H}$ aromatic and C6-H), 6.70 (m, 2 H , aromatic), 5.25 (ddd, $1 \mathrm{H}, \mathrm{C} 5-\mathrm{H}, J=1.2,5.5,8.7$ Hz), 5.18 (apparent triplet, $1 \mathrm{H}, \mathrm{C} 2-\mathrm{H}, J=3.7 \mathrm{~Hz}$), 3.73 (s, 3 H , $\left.\mathrm{OCH}_{3}\right), 3.57\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.1 \mathrm{~Hz}\right), 2.86(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 4-\mathrm{H})$, $2.67\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 3-\mathrm{H}_{\text {cu }}\right), 1.28$ (ddd, $1 \mathrm{H}, \mathrm{C} 3-\mathrm{H}_{\mathrm{ax}}, J=2.2,7,14 \mathrm{~Hz}$), 0.94 (t, $3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, J=7.1 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}, \mathrm{ppm}\right)$
$171.9\left(\mathrm{CO}_{2} \mathrm{Et}\right), 158.9$ (C aromatic), 139.3 (C aromatic), $132.9(\mathrm{CH}$ aromatic), 130.0 (C aromatic), 129.3 (CH aromatic), 129.2 (CH aromatic), 127.8 (CH aromatic), $127.0(\mathrm{CH}$ aromatic), $126.5(\mathrm{CH}$ aromatic), 125.3 (CH aromatic), $113.4(\mathrm{CH}, \mathrm{C} 6), 105.6(\mathrm{CH}, \mathrm{C} 5), 60.6$ $\left(\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 55.2\left(\mathrm{OCH}_{3}\right), 54.7(\mathrm{CH}, \mathrm{C} 2), 34.5(\mathrm{CH}, \mathrm{C} 4), 29.7$ $\left(\mathrm{CH}_{2}, \mathrm{C} 3\right), 13.5\left(\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$; IR (neat) $\nu_{\max } 2927,1725,1654,1612$, $1513,1446,1339,1249,1169,1098,1035,910,830,747,725 \mathrm{~cm}^{-1}$; EIMS m / e (relative intensity) 401 ($\mathrm{M}^{+}, 24$), 328 (22), 260 (73), 259 (11), 187 (24), 186 (66), 157 (38), 141 (21), 134 (91), 94 (12), 93 (38), 84 (11), 80 (16), 77 (base), 51 (39), 49 (22); CIMS (2-methylpropane) m / e (relative intensity) $402\left(\mathrm{M}+\mathrm{H}^{+}\right.$, base); ElHRMS m/e 401.1297 $\left(\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{5} \mathrm{~S}\right.$ requires 401.1297). Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{5} \mathrm{~S}: \mathrm{C}$ 62.83; H, 5.77; N, 3.49. Found: C, 62.82; H, 5.75; N, 3.67.

Irradiation of $\mathrm{C} 3-\mathrm{H}_{\mathrm{ax}}$ resulted in a 23% increase in the $\mathrm{C} 3-\mathrm{H}_{\mathrm{eq}}$ signal, a 17% increase in the $\mathrm{C} 4-\mathrm{H}$ signal, a 6% increase in the $\mathrm{C} 2-\mathrm{H}$ signal, and a 4% increase in the signal for the ortho hydrogens of the phenylsulfonamide in the NOE difference spectrum. Irradiation of $\mathrm{C} 3-\mathrm{H}_{\mathrm{eq}}$ resulted in a 23% increase in the $\mathrm{C} 3-\mathrm{H}_{\mathrm{ax}}$ signal, a 9% increase in the $\mathrm{C} 2-\mathrm{H}$ signal, and a 18% increase in the signal for the ortho hydrogens of the p-methoxyphenyl substituent at C 2 in the NOE difference spectrum (CDCl_{3} 200 MHz)

Diagnostic ${ }^{1} \mathrm{H}$ NMR signals utilized for the determination of the endo/exo ratio (by integration) for the minor cycloadduct are as follows 3.78 (s, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}$), 2.18 (ddd, $1 \mathrm{H}, \mathrm{C} 3-\mathrm{H}_{\infty 9}, J=12.5,2.4,2.1 \mathrm{~Hz}$), 1.63 (dt, I $\mathrm{H}, \mathrm{C} 3-\mathrm{H}_{\mathrm{ax}}, J=12.5,4.3 \mathrm{~Hz}$). This was further established to be the exo diastereomer by deliberate epimerization as detailed in the fol lowing text.

Base-Catalyzed Epimerization of ($2 R^{*}, 4 R^{*}$)-4-(Ethoxycarbonyl)-2($\mathbf{4}^{\prime}$-methoxyphenyl)-1-(phenylsulfonyl)-1,2,3,4-tetrahydropyridine (47endo): Preparation of ($2 R^{*}, 4 S^{*}$)-4-(Ethoxycarbonyl)-2-(4^{\prime}-methoxy-phenyl)-1-(phenylsulfonyl)-1,2,3,4-tetrahydropyridine. Following the procedure for epimerization of $\mathbf{3 7 b}, 47$-endo afforded a $5.5: 1$ ratio of C 4 epimers with the ($2 R^{*}, 4 S^{*}$) epimer as the major product: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}, \mathrm{ppm}\right) 7.70(\mathrm{~d}, 2 \mathrm{H}$, aromatic, $J=7.5 \mathrm{~Hz}), 7.50(\mathrm{~m}$, 3 H , aromatic), 7.08 (d, 2 H , aromatic, $J=8.6 \mathrm{~Hz}$), 6.98 (dd, 1 H $\mathrm{C} 6-\mathrm{H}, J=2.1,8.4 \mathrm{~Hz}), 6.78(\mathrm{~d}, 2 \mathrm{H}$, aromatic, $J=8.6 \mathrm{~Hz}), 5.18(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{C} 5-\mathrm{H}$ and $\mathrm{C} 2-\mathrm{H}), 4.07\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}, J=7.1 \mathrm{~Hz}\right), 3.78(\mathrm{~s}$ $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}$), $2.72(\mathrm{dt}, 1 \mathrm{H}, \mathrm{C} 4-\mathrm{H}, J=12,2.4 \mathrm{~Hz}$) 2.18 (ddd, 1 H , $\left.\mathrm{C} 3-\mathrm{H}_{\mathrm{oq}}, J=12.5,2.4,2.1 \mathrm{~Hz}\right), 1.63\left(\mathrm{dt}, 1 \mathrm{H}, \mathrm{C} 3-\mathrm{H}_{\mathrm{ax}}, \mathrm{C} 3, J=12.5,4.3\right.$ $\mathrm{Hz}), 1.08\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}, J=7.1 \mathrm{~Hz}\right)$
($2 R^{*}, 3 R^{*}, 4 S^{*}$)-4-(Ethoxycarbonyl)-2-(4'-methoxyphenyl)-3-methyl-1-(phenylsulfonyl)-1,2,3,4-tetrahydropyridine (48-endo). Conditions: (E)-4-propenyl anisole (2 equiv), 0.22 mmol scale, 53 h , benzene, $80^{\circ} \mathrm{C}$. Examination of crude ${ }^{1} \mathrm{H}$ NMR (300 MHz) showed a $4.5: 1$ (endo/exo) mixture of isomers (isolated $\mathbf{4 8} 44 \%, 4: 1$ (endo/exo)). For pure 48 -endo: mp $139-140^{\circ} \mathrm{C}(\mathrm{EtOAc} /$ hexane $) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}, \mathrm{ppm}) 7.72(\mathrm{~m}, 2 \mathrm{H}$, aromatic), $7.52(\mathrm{~m}, 1 \mathrm{H}$, aromatic), 7.41 (m, 2 H , aromatic), 7.04 (d, $1 \mathrm{H}, \mathrm{C} 6-\mathrm{H}, J=8.5 \mathrm{~Hz}$), $6.75(\mathrm{~m}, 2 \mathrm{H}$, aromatic), 6.65 (m, 2 H , aromatic), 5.06 (ddd, $1 \mathrm{H}, \mathrm{C} 5-\mathrm{H}, J=1.35,5.4$, $8.5 \mathrm{~Hz}), 4.91$ (broad s, $1 \mathrm{H}, \mathrm{C} 2-\mathrm{H}$), $3.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.49(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), $2.96(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 3-\mathrm{H}), 2.53(\mathrm{~d}, 1 \mathrm{H}, \mathrm{C} 4-\mathrm{H}, J=5.5 \mathrm{~Hz}), 0.93$ $\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}, J=7.09 \mathrm{~Hz}\right), 0.79\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH} \mathrm{C}_{3} \mathrm{CH}, J=7.12 \mathrm{~Hz}\right)$; ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}, \mathrm{ppm}\right) 171.9\left(\mathrm{CO}_{2} \mathrm{Et}\right), 159.1$ (C aromatic) 140.1 (C aromatic), 133.2 (CH aromatic), 130.7 (C aromatic), 129.3 (CH aromatic), 127.9 (CH aromatic), $124.4(\mathrm{CH}$ aromatic), $113.6(\mathrm{CH}$, C6), $102.3(\mathrm{CH}, \mathrm{C} 5), 60.8\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right.$ and $\left.\mathrm{CH}, \mathrm{C} 2\right), 55.4\left(\mathrm{OCH}_{3}\right), 41.8$ $(\mathrm{CH}, \mathrm{C} 4), 35.2(\mathrm{CH}, \mathrm{C} 3), 20.0\left(\mathrm{CH}_{3} \mathrm{CH}\right), 13.8\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right)$; IR (KBr) $\nu_{\max } 2970,2361,1725,1701,1697,1685,1654,1613,1513,1448,1405$, $1363,1249,1170,1089,1068,1036,1005,916,853,729 \mathrm{~cm}^{-1}$; EIMS m / e (relative intensity) 415 ($\mathrm{M}^{+}, 12$), 342 (11), 274 (32), 201 (13), 200 (33), 148 (base), 137 (17), 135 (31), 121 (13), 94 (12), 77 (37); CIMS (2-methylpropane) m / e (relative intensity) $416\left(\mathrm{M}+\mathrm{H}^{+}\right.$, base); EIHR MS m/e $415.1453\left(\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{5} \mathrm{~S}\right.$ requires 415.1453). Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{5} \mathrm{~S}: \mathrm{C}, 63.60 ; \mathrm{H}, 6.06 ; \mathrm{N}, 3.37$. Found: $\mathrm{C}, 63.81 ; \mathrm{H}, 6.33$; N, 3.41.

A single-crystal X-ray structure determination confirmed the structure of 48 -endo. ${ }^{2 l \mathrm{c}}$
($2 R^{*}, 3 R^{*}, 4 R^{*}$)-4-(Ethoxycarbonyl)-2-(4'-methoxyphenyl)-3-methyl-1-(phenylsulfonyl)-1,2,3,4-tetrahydropyridine (48-exo). Minor product 48-exo: ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$, ppm $) 7.72$ (m, 2 H , aromatic), 7.52 (m, 1 H , aromatic), 7.41 (m, 2 H , aromatic), 7.04 (m 2 H , aromatic), 6.98 (dd, $1 \mathrm{H}, \mathrm{C} 6-\mathrm{H}, J=2.2,8.5 \mathrm{~Hz}$) 6.77 (m, 2 H aromatic), 5.12 (d apparent $\mathrm{t}, 1 \mathrm{H}, \mathrm{C} 5 \cdot \mathrm{H}, J=1.3,8.5 \mathrm{~Hz}$), $4.86(\mathrm{~d}, \mathrm{I}$ $\mathrm{H}, \mathrm{C} 2-\mathrm{H}, J=1.8 \mathrm{~Hz}), 4.08\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$ $2.85(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 4-\mathrm{H}), 2.42(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 3-\mathrm{H}), 1.18\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}, J\right.$ $=7.1 \mathrm{~Hz}), 0.57\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}, J=6.8 \mathrm{~Hz}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50\right.$ $\mathrm{MHz}, \mathrm{ppm}) 172.9\left(\mathrm{CO}_{2} \mathrm{Et}\right), 159.4$ (C aromatic), 140.0 (C aromatic) 133.2 (CH aromatic), 132.9 (C aromatic), 129.4 (CH aromatic), 127.3 (CH aromatic), 127.1 (CH aromatic), 124.7 (CH aromatic), $114.3(\mathrm{CH}$ $\mathrm{C} 6), 101.6(\mathrm{CH}, \mathrm{C} 5), 62.5(\mathrm{CH}, \mathrm{C} 2), 61.0\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 55.5\left(\mathrm{OCH}_{3}\right)$, $38.1(\mathrm{CH}, \mathrm{C} 4), 34.5(\mathrm{CH}, \mathrm{C} 3), 14.3\left(\mathrm{CH}_{3} \mathrm{CH}\right), 14.2\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right)$; IR (neat) $\nu_{\max } 2921,2361,2345,1830,1773,1756,1749,1740,1730,1718$, $1707,1701,1696,1685,1676,1670,1663,1654,1647,1636,1628,1047$ 1025, $995,940 \mathrm{~cm}^{-1}$; EIMS m / e (relative intensity) $415\left(\mathrm{M}^{+}, 3\right), 292$ (8), 274 (4), 201 (6), 200 (17), 186 (6), 148 (base), 147 (10), 121 (9), 94 (9), 77 (46); CIMS (2-methylpropane) m / e (relative intensity) 416 ($\mathrm{M}+\mathrm{H}^{+}$, base); EIHRMS m/e $415.1459\left(\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{5} \mathrm{~S}\right.$ requires 415.1453).
($2 R^{*}, 4 S^{*}$)-4-(Ethoxycarbonyl)-2-n-hexyl-1-(phenylsulfonyl)-1,2,3,4tetrahydropyridine (49). Conditions: 1 -octene (3 equiv) 0.21 mmol scale $6 \mathrm{~d}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 13.3 \mathrm{kbar}$. Examination of crude ${ }^{1} \mathrm{H}$ NMR (300 MHz) showed a 4.5:1 (endo/exo) mixture of isomers (isolated 49: 18\% 5:1 (endo/exo)). 49-endo: $\left.{ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(} \mathrm{CDCl}_{3}, 300 \mathrm{MHz}, \mathrm{ppm}\right) 7.78$ (m, 2 H , aromatic), $7.53(\mathrm{~m}, 3 \mathrm{H}$, aromatic), $6.70(\mathrm{dd}, 1 \mathrm{H}, \mathrm{C} 6-\mathrm{H}, J=8.2$, 1.5 Hz) , 5.27 (ddd, $1 \mathrm{H}, \mathrm{C} 5-\mathrm{H}, J=1,4.5,8.2 \mathrm{~Hz}), 4.12(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $2.93(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 2-\mathrm{H}), 2.77(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 4-\mathrm{H}), 2.27(\mathrm{~d}, 1$ $\left.\mathrm{H}, \mathrm{C} 3-\mathrm{H}_{\mathrm{eq}}, J=13.9 \mathrm{~Hz}\right), 1.25\left(\mathrm{~m}, 14 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CH}_{3}\right.$, and $\left.\mathrm{C} 3-\mathrm{H}_{\mathrm{ax}}\right), 0.87$ (t, $3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}, J=6.9 \mathrm{~Hz}$); diagnostic ${ }^{1} \mathrm{H}$ NMR signals utilized for the estimation of endo/exo ratio (by integration) for the minor cycloadduct $3.05(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 4-\mathrm{H}), 1.84\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 3-\mathrm{H}_{\mathrm{eq}}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}, \mathrm{ppm}\right) 173.4\left(\mathrm{CO}_{2} \mathrm{Et}\right), 159.7$ (C aromatic), $133.2(\mathrm{CH}$ aromatic), 129.7 (CH aromatic), 127.4 (CH aromatic), $124.7(\mathrm{CH}, \mathrm{C} 6)$, 107.2 (CH, C5), $61.4\left(\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 53.0(\mathrm{CH}, \mathrm{C} 2), 35.0(\mathrm{CH}, \mathrm{C} 4)$, $31.9\left(\mathrm{CH}_{2}\right), 31.8\left(\mathrm{CH}_{2}\right), 29.3\left(\mathrm{CH}_{2}, \mathrm{C} 3\right), 26.5\left(\mathrm{CH}_{2}\right), 25.8\left(\mathrm{CH}_{2}\right), 22.8$ $\left(\mathrm{CH}_{3}\right), 14.2\left(\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; \mathrm{IR}$ (neat) $\nu_{\text {max }} 2928,2857,1734,1685$, 1654, 1559, 1541, 1508, 1458, 1447, 1362, 1339, 1171, 1096, 1030, 914 $727 \mathrm{~cm}^{-1}$; EIMS m / e (relative intensity) $379\left(\mathrm{M}^{+}, 4\right), 307(9), 306$ (46) 238 (34), 220 (14), 141 (20), 94 (14), 81 (17), 80 (base), 78 (11), 77 (79), 69 (12), 67 (13), 57 (11), 55 (22), 53 (15), 51 (10); CIMS (2 methylpropane) m / e (relative intensity) $380\left(\mathrm{M}+\mathrm{H}^{+}\right.$, base); EIHRMS $m / e 379.1821\left(\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{NO}_{4} \mathrm{~S}\right.$ requires 379.1817$)$.
Acknowledgment. The work was assisted through the financial support of the National Institutes of Health (Grant No. CA 42056), a Graduate Fellowship of the ACS Division of Organic Chemistry (W.L.C., 1990-1991) sponsored by ICI Americas, Inc., and a Purdue University David Ross Graduate Fellowship (T.T.C., 1990-1992). We thank R. J. Mathvink and J. M. Wiggins for the initial preparations of 15 and Professor F. W. Fowler for stimulating discussions and for sharing the results of unpublished efforts in progress in his laboratory (ref 13). The single-crystal X-ray structure analysis of 9, 21a, 28a, 40-endo, 45 -endo, and 48 -endo were conducted by Dr. P. Fanwick of the Purdue University X-ray crystallography facility.
Supplementary Material Available: ORTEPS of the single-crystal X-ray structures of 9, 21a, 28a, 40 -endo, 45 -endo, and 48 -endo, NOE summary, and summary of epimerization studies (9 pages). Ordering information is given on any current masthead page.

[^0]: (1) Boger, D. L.; Weinreb, S. M. Hetero Diels-Alder Methodology in Organic Synthesis; Academic Press: San Diego, 1987.
 (2) Boger, D. L. Tetrahedron 1983, 39, 2869.
 (3) Cheng, Y.-S.; Fowler, F. W.; Lupo, A. T., Jr. J. Am. Chem. Soc. 1981, 103, 2090. Cheng, Y.-S.; Lupo, A. T., Jr.; Fowler, F. W. J. Chem. Soc. 1983, 105, 7696. Hwang, Y. C.; Fowler, F. W. J. Org. Chem. 1985, 50, 2719.
 (4) Ito, Y.; Miyata, S.; Nakatsuka, M.; Saegusa, T. J. Am. Chem. Soc. 1981, 103. 5250. Itt, Y.: Nakajo, E.; Nakatsuka, M.; Saegusa, T. Tetrahedron Lett. 1983, 24, 2881 . Ito, Y.; Nakajo, E.; Saegusa, T. Synth. Commun. 1986, 16,1073 . For related and early work, see ref 1 and works cited therein.
 (5) Poncin, B. S.-; Frisque, A.-M. H.-; Ghosez, L. Tetrahedron Lett. 1982, 23, 3261. Tamura, Y.: Tsugoshi, T.; Nakajima, Y.; Kita, Y. Synthesis 1984, 930. Potts, K. T.; Walsh, E. B.; Bhattacharjee, D. J. Org. Chem. 1987, 52, 2285. Potts, K. T.: Bhattacharjee, D.; Walsh, E. B. J. Chem. Soc., Chem. Commun. 1984, 114. Ota, T.; Masuda, S.; Tanaka, H. Chem. Lett. 1981, 411.
 (6) Ihara, M.; Kirihara, T.; Kawaguchi, A.; Fukumoto, K.; Kametani, T. Tetrahedron Lett. 1984, 25, 4541 . Ihara, M.; Tsuruta, M.; Fukumoto, K.; Kametani, T. J. Chem. Soc., Chem. Commun. 1985, 1159. Ihara, M.; Kirihara, T.; Fukumoto, K.; Kametani. T. Helerocycles 1985, 23, 1097.
 (7) (a) Whitesell, M. A.; Kyba, E. P. Tetrahedron Lett. 1984, 25, 2119. (b) Nenitzescu, C. D.; Cioranescu, E.; Birladeanu, L. Commun. Acad. Rep. Populare Romine 1958, 8, 775. Taylor, E. C.; Eckroth, D. R.; Bartulin, J. J. Org. Chem. 1967, 32, 1899. (c) Baydar, A. E.; Boyd, G. V.; Lindley, P. F.; Watson, F. J. Chem. Soc., Chem. Commun. 1979, I78. (d) Alberola, A.; Gonzälez, A. M.; Gonzâlez, B.; Laguna, M. A.; Pulido, F. J. Tetrahedron Lett. 1986, 27, 2027. (e) Komatsu, M.; Takamatsu, S.; Uesaka, M.; Yamamoto, S.; Ohshiro, Y.; Agawa, T. J. Org. Chem. 1984, 49, 2691. Ohshiro, Y.; Komatsu, M.; Uesaka, M.; Agawa, T. Heterocycles 1984, 22, 549.

[^1]: (8) Boger, D. L. Chem. Rev. 1986, 86, 781.
 (9) Boger, D. L.; Patel, M. In Progress in Heterocyclic Chemistry; Suschitzky, H.; Scriven, E. F. V., Eds.; Pergamon Press: New York, 1989; Vol. 1, p 30. Boger, D. L. Bull. Soc. Chim. Belg. 1990, 99, 599.

[^2]: ${ }^{a}$ A total of 5 equiv of dienophile employed unless otherwise indicated. ${ }^{b}$ A total of 2 equiv of dienophile employed, 66% recovered diene.

[^3]: (18) The $[4+2]$ cycloaddition products were purified by chromatography on Florisil and on occasion have proven somewhat unstable to silica gel. For example, the cycloadducts $\mathbf{2 g}$-1 are not completely stable to this method of purification and 14 proved unstable to chromatography on Florisil. To date, we have not detected epimerization of the cycloadduct C 2 center resulting from the conditions of purification and the products have proven configurationally stable.

[^4]: (19) Treatment of 1 h with a $64: 36$ mixture of (Z)-:((E)-benzyl 1-propenyl ether (55% yield, 42 h , toluene, $6 \mathrm{kbar}, 25^{\circ} \mathrm{C}$) provided a $22: 78$ mixture of the corresponding $[4+2]$ cycloaddition products, $k(E) / k(Z)=6.3$.

[^5]: (22) For the related preparation and Wittig reactions of $\mathrm{EtO}_{2} \mathrm{CC}$ $\left(\mathrm{NOCH}_{3}\right) \mathrm{CH}_{2} \mathrm{PPh}_{3}{ }^{+} \mathrm{Br}^{-}$, see: Bicknell, A. J.; Burton, G.; Elder, J. S. Tetrahedron Lett. 1988, 29, 3361.
 (23) Since the conduct of this work, we have found that deprotection of the tetrahydropyranyl ethers may be accomplished in shorter reaction times by using catalytic Amberlyst H-15 in an ethanolic solution of the tetrahydropyranyl oxime. Bongini, A.; Cardillo, G.; Orena, M.; Sergio, S. Synthesis 1979, 618.
 (24) Consistent with intuitive expectations, the N-sulfonylimines 19 and 20 proved more sensitive to hydrolysis by adventitious water than N-sulfonyl azadienes lacking the C 2 ethoxycarbonyl group but may be purified by rapid chromatography (SiO_{2}, Florisil) with partial but not extensive loss of material.

[^6]: (25) Characteristic coupling constants ($\mathrm{C} 2-\mathrm{OR}$ axial): $J_{\mathrm{C} 2}-\mathrm{H}_{\text {e }} / \mathrm{Cl}_{3}-\mathrm{He}_{\mathrm{e}}=$ $2.7-5.0 \mathrm{~Hz}, J_{\mathrm{C} 2}-\mathrm{H}_{\mathrm{eq}} / \mathrm{C} 3-\mathrm{H}_{\mathrm{ax}}=2.5-4.4 \mathrm{~Hz}, J_{\mathrm{C} 3}-\mathrm{Hequ}_{\mathrm{eq}} / \mathrm{C}_{4}-\mathrm{Heq}_{\text {eq }}={ }^{\mathrm{J}_{2}-\mathrm{H}_{\text {eq }} / \mathrm{C}_{3}-\mathrm{H}_{\mathrm{eq}}=}$ $J_{\mathrm{C} 3-\mathrm{H}_{\mathrm{ax}} / \mathrm{C} 4-\mathrm{H}_{\mathrm{oc}}}=8.9-99.3 \mathrm{~Hz}, J_{\mathrm{C} 4-\mathrm{H}_{\mathrm{eq}} / \mathrm{Cs}-\mathrm{H}}=3.2-3.6-\mathrm{Hz}, \bigodot_{\mathrm{C} 2}^{4} J_{\mathrm{C}} / \mathrm{H} 2=163-158 \mathrm{~Hz}$. The exceptions (30, 32, 29) may exist in the all-equatorial conformation: for $30 J_{\mathrm{C} 2-\mathrm{H}_{\mathrm{a}}} / \mathrm{Cl}_{3-\mathrm{H}_{4 x}}=4.4 \mathrm{~Hz}, J_{\mathrm{C} 3-\mathrm{H}_{43} / \mathrm{C}_{4}-\mathrm{H}}=13 \mathrm{~Hz}, J_{\mathrm{C} 4-\mathrm{H}_{\mathrm{ax}} / \mathrm{Cs}-\mathrm{H}}=3.6 \mathrm{~Hz},{ }^{1} J_{\mathrm{C} 2} / \mathrm{H} 2$ $=156.6 \mathrm{~Hz}$; for $32{ }^{1} J_{\mathrm{C} 2 / \mathrm{H} 2}=153.7 \mathrm{~Hz}$; for $29{ }^{1} J_{\mathrm{C} 2 / \mathrm{H} 2}=140-145 \mathrm{~Hz}$. The single-crystal X-ray structure determinations of 21a and 28a established the $\mathrm{C} 2 / \mathrm{C} 4$ and $\mathrm{C} 2 / \mathrm{C} 3 / \mathrm{C} 4$ cis relative stereochemistry that must arise through endo $[4+2]$ cycloaddition and proved consistent with the ${ }^{1} \mathrm{H}$ NMR spectroscopically assigned structures and stereochemistry. For 19a: $J_{\mathrm{C} 2}-\mathrm{H}_{\mathrm{cq}} / \mathrm{C} 3-\mathrm{H}_{\mathrm{eq}}$

 (26) Full details of the studies conducted are presented in supplementary material.
 (27) No trace of the Diels-Alder products derived from 1 h or 1 If was detected in the reaction mixture.

[^7]: (28) The relative rates of $[4+2]$ cycloaddition were derived from product distributions obtained from the reaction of a mixture of (Z) - and (E)-ethyl-1-propenyl ether ($2.8: 1,10$ equiv) with $19 \mathrm{a}\left(25^{\circ} \mathrm{C}, 96 \mathrm{~h}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 1 \mathrm{latm}\right.$), 28a/20a ($\left(1.0: 3.3\right.$), 54% and $\left.25^{\circ} \mathrm{C}, 96 \mathrm{~h}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 6.2 \mathrm{kbar}\right)$, 28a/30a (1.0:2.0), 65\%).

[^8]: (30) Stotter, P. L.; Eppner, J. B. Tetrahedron Lett. 1973, 2417.
 (31) Unlike simple N-sulfonylimines, 35 and 36 proved sensitive to hydrolysis by adventitious water and could not be purified by chromatography without extensive loss of material. All yields of cycloadducts of 35 and 36 are based on pure material isolated by chromatography (Florisil, 100-200 mesh) or recrystallization. Cycloadducts with endo/exo ratios of $5: 1$ or less were separated chromatographically and independently characterized fully. Cycloadducts with endo/exo ratios of 11:1 or greater were separated and the major diastereomer characterized fully. Endo/exo diastereomer ratios were established spectroscopically (${ }^{(H}$ NMR, integration) as detailed in the experimental section.
 (32) Characteristic coupling constants: $\mathrm{C} 2-\mathrm{OR}$ axial $\mathrm{J}_{\mathrm{C} 2}-\mathrm{He}_{\mathrm{e}} / \mathrm{C}_{3}-\mathrm{Ha}_{\mathrm{a}} \mathrm{H}=$

 (33) The solvent rate study was conducted in deuterated solvents and monitored by ${ }^{1} \mathrm{H}$ NMR (300 or 500 MHz) where the comparison of the amount of starting material to product could easily be determined. A solution of 35 in solvent was cooled to $0^{\circ} \mathrm{C}$ and treated with ethyl vinyl ether (5 equiv).
 (34) A solution of $35\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}\right)$ was treated with a mixture of (Z) and (E)-ethyl-1-propenyl ether (2.8:1, 20 equiv) and stirred while gradually warming to $21^{\circ} \mathrm{C}$. After 44 h , a $4.8: 1$ ratio of cycloadducts arising from (E)and (Z)-ethyl I-propenyl ether, respectively, was observed by 'H NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$).

[^9]: (35) A solution of $\mathbf{3 5}(0.16 \mathrm{mmol})$ and diene $\mathbf{1 i} / \mathbf{1 h}(0.16 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was cooled to $0{ }^{\circ} \mathrm{C}$ and tre ted with ethyl vinyl ether (0.08 mmol). Inspection of the crude product by 'H NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) showed a $>20: 1$ (37a/11a or 12) ratio of products after 52 h .

[^10]: (36) Proton nuclear magnetic resonance spectra ('H NMR) and carbon nuclear magnetic resonance spectra (${ }^{13} \mathrm{C}$ NMR) were recorded on a Gemini 200, QE-300, or VSR-500S spectrometer, and chemical shifts are reported in parts per million (ppm) relative to internal tetramethylsilane (0.00 ppm). For APT ${ }^{13} \mathrm{C}$ NMR, $e=$ even and $o=$ odd number of attached protons. Infrared spectra (IR) were recorded on a Perkin Elmer 1420 or Perkin Elmer Model 1800 FTIR as KBr pellets (solids) and thin films (liquids and oils). Melting points (mp) were determined on a Thomas Hoover capillary melting point apparatus and are uncorrected. Electron impact mass spectra (EIMS) and chemical ionization mass spectra (CIMS) were recorded on a Finnegan 4000 mass spectrometer. Electron impact (EI) and chemical ionization (CI) high-resolution mass spectra (HRMS) were recorded on a Kratos MS-50 spectrometer. All high-pressure reactions were performed in a Leco hydraulically pressurized apparatus ${ }^{37}$ containing a castor oil media using Teflon vessels sealed at both ends with brass screw clamps. Flash chromatography was performed on 230-400 mesh silica gel $\left(\mathrm{SiO}_{2}\right)$ and $100-200$ mesh Florisil. Tetrahydrofuran (THF), ether $\left(\mathrm{Et}_{2} \mathrm{O}\right)$, and benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$ were distilled from sodium benzophenone ketyl. Dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ was distilled from phosphorus pentoxide. Carbon tetrachloride $\left(\mathrm{CCl}_{4}\right)$, triethylamine ($\mathrm{Et}_{3} \mathrm{~N}$), and N, N-dimethylformamide (DMF) were distilled from calcium hydride. Methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ was distilled from magnesium turnings. All extraction and chromatographic solvents: ethyl ether ($\mathrm{Et}_{2} \mathrm{O}$), dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, ethyl acetate (EtOAc), and hexane were distilled prior to use. All reactions requiring anhydrous conditions and/or an inert atmosphere were performed under a positive pressure of argon or nitrogen. Ethyl vinyl ether, 1,1-dimethoxyethylene, 2-methoxypropene, (E)-4-propenylanisole, styrene, and 4 -vinylanisole were obtained from Aldrich Chemical Co., Inc. 1,1-Dimethoxyethylene was obtained from Wiley Organics. Ethyl-1-propenyl ether was obtained as a 2.8:1 (Z / E) mixture from Fluka Chemical Corp. and separated by gas chromatography. Benzyl vinyl ether ${ }^{36 \mathrm{a}}(\boldsymbol{Z})$-benzyl 1 -propenyl ether, ${ }^{366}$ (E)-1-ethoxy-2-phenylethylene, ${ }^{36 c}(Z)$-1-ethoxy-2-phenylethylene, ${ }^{36 \mathrm{~d}}$ 1-meth-oxy-1,2-propadiene, ${ }^{366}$ (E)-1-acetoxy-2-(benzyloxy)ethylene, ${ }^{36 f}$ and (Z)-1-acetoxy-2-(benzyloxy)ethylene ${ }^{36 f}$ were prepared according to the following procedures: (a) Watanabe, W. H.; Conlon, L. E. J. Am. Chem. Soc. 1957, 79, 2828. (b) Rautenstrauch, V.; Büchi, G.; Wüest, H. J. Am. Chem. Soc. 1974, 96, 2576. (c) Negishi, E.; Takahashi, T.; Baba, S.; Van Horn, D. E.; Okukado, N. J. Am. Chem. Soc. 1987, 109, 2393. (d) Baldwin, J. E.; Walker, L. E. J. Org. Chem. 1966, 3l, 3985. (e) Hoff, S.; Brandsma, L.; Arens, J. F. Rec. Trav. Chim. Pays-Bas 1968, 87, 916. (f) Boger, D. L.; Robarge, K. D. J. Org. Chem. 1988, 53, 5976.

[^11]: (37) DeShong, P.; Dicken, C. M.; Perez, J. J.; Shoff, R. M. Org. Prep. Proced. Int. 1982, 14, 369.
 (38) Boger, D. L.; Nakahara, S. J. Org. Chem., in press.

