Inverse Electron Demand Diels-Alder Reactions of N-Sulfonyl α,β -Unsaturated Imines: A General Approach to Implementation of the 4π Participation of 1-Aza-1,3-butadienes in Diels-Alder Reactions

Dale L. Boger,* Wendy L. Corbett, Timothy T. Curran, and A. M. Kasper

Contribution from the Department of Chemistry, Purdue University, West Lafayette, Indiana 47907. Received September 4, 1990

Abstract: Full details of a study of the inverse electron demand Diels-Alder reactions of N-sulfonyl-1-aza-1,3-butadienes are described. The α,β -unsaturated N-sulfonylimines proved accessible through clean, homolytic rearrangement of in situ generated oxime O-sulfinyl compounds or through direct condensation of sulfonamides with α,β -unsaturated aldehydes. Thermal- or pressure-promoted [4 + 2] cycloaddition reactions of the N-sulfonyl-1-aza-1,3-butadienes with electron-rich olefins generally provided a single cycloadduct derived from predominant (≥ 20 :1) cycloaddition through an endo transition state. The complementary C3 addition of an electron-withdrawing substituent to the N-sulfonyl-I-aza-I, 3-butadienes substantially accelerated their participation in the LUMO_{diene}-controlled Diels-Alder reactions and such reactions may be conducted at 25 °C. Characteristic of a concerted [4 + 2] cycloaddition reaction, the reactions were found to proceed with full preservation of the dienophile olefin stereochemistry, to exhibit little solvent dependency on the [4 + 2] cycloaddition rate, trans 1,2-disubstituted dienophiles were shown to be more reactive than cis 1,2-disubstituted dienophiles, and the cis versus trans 1,2-disubstituted dienophiles were shown to exhibit a preferential pressure-induced rate acceleration. In addition, the noncomplementary C2 or C4 addition of an electron-withdrawing substituent to the N-sulfonyl-I-aza-1,3-butadienes accelerated the azadiene participation in LUMO_{diene}-controlled Diels-Alder reactions (25 °C) that maintain the regioselectivity and endo diastereoselectivity of the parent azadienes and that display characteristics consistent with concerted [4 + 2] cycloaddition reactions. Computational studies support the observed endo diastereoselectivity that may be derived from a pronounced, stabilizing secondary orbital interaction. However, the unusually high endo diastereoselectivity (≥ 20.1) suggests this may only be part of the origin of the cycloaddition selectivity. It is suggested that the endo [4 + 2] cycloaddition transition state in which the lone pair on nitrogen and the σ C-O bond of the dienophile lie trans periplanar further benefits from a n- σ^* stabilization in a manner analogous to the product ground-state conformation (anomeric effect).

The Diels-Alder 4π participation of simple α,β -unsaturated imines is rarely observed and typically suffers low conversions, competitive imine addition, and/or imine tautomerization precluding [4 + 2] cycloaddition.^{1,2} Consequently, only a limited number of I-aza-1,3-butadiene structural variations and modified or restricted reaction conditions have been introduced that have permitted the productive 4π participation of α,β -unsaturated imines in [4 + 2] cycloaddition reactions.³⁻⁷ These include the use of the intramolecular [4 + 2] cycloaddition reactions of in situ generated N-acyl-1-aza-1,3-butadienes³ (flash vacuum pyrolysis) and in situ generated o-quinomethide monoimines,⁴ the HOMO_{diene}-controlled Diels-Alder reactions of α,β -unsaturated

Organic Synthesis; Academic Press: San Diego, 1987.
(2) Boger, D. L. Tetrahedron 1983, 39, 2869.
(3) Cheng, Y.-S.; Fowler, F. W.; Lupo, A. T., Jr. J. Am. Chem. Soc. 1981, 103, 2090. Cheng, Y.-S.; Lupo, A. T., Jr.; Fowler, F. W. J. Chem. Soc. 1983, 105, 7696. Hwang, Y. C.; Fowler, F. W. J. Org. Chem. 1985, 50, 2719.
(4) Ito, Y.; Miyata, S.; Nakatsuka, M.; Saegusa, T. J. Am. Chem. Soc. 1981, 103, 5250. Ito, Y.; Nakajo, E.; Nakatsuka, M.; Saegusa, T. Synth. Commun. 1986, 16, 1073. For related and early work see ref 1 and works cited therein. 1986, 16, 1073. For related and early work, see ref 1 and works cited therein. (5) Poncin, B. S.; Frisque, A.-M. H.; Ghosez, L. Tetrahedron Lett. 1982, 23, 3261. Tamura, Y.; Tsugoshi, T.; Nakajima, Y.; Kita, Y. Synthesis 1984, 930. Potts, K. T.; Walsh, E. B.; Bhattacharjee, D. J. Org. Chem. 1987, 52, 2285. Potts, K. T.; Bhattacharjee, D.; Walsh, E. B. J. Chem. Soc., Chem. 2285. Potts, K. 1.; Bnattacnarjee, D.; Walsh, E. B. J. Chem. Soc., Chem.
Commun. 1984, 114. Ota, T.; Masuda, S.; Tanaka, H. Chem. Lett. 1981, 411.
(6) Ihara, M.; Kirihara, T.; Kawaguchi, A.; Fukumoto, K.; Kametani, T.
Tetrahedron Lett. 1984, 25, 4541. Ihara, M.; Tsuruta, M.; Fukumoto, K.;
Kametani, T. J. Chem. Soc., Chem. Commun. 1985, 1159. Ihara, M.; Kirihara, T.; Fukumoto, K.; Kametani, T. Heterocycles 1985, 23, 1097.
(7) (a) Whitesell, M. A.; Kyba, E. P. Tetrahedron Lett. 1984, 25, 2119.

(1) (a) Whitesell, M. A.; Kyba, E. P. Tetrahearon Lett. 1984, 25, 2119.
(b) Nenitzescu, C. D.; Cioranescu, E.; Birladeanu, L. Commun. Acad. Rep. Populare Romine 1958, 8, 775. Taylor, E. C.; Eckroth, D. R.; Bartulin, J. J. Org. Chem. 1967, 32, 1899. (c) Baydar, A. E.; Boyd, G. V.; Lindley, P. F.; Watson, F. J. Chem. Soc., Chem. Commun. 1979, 178. (d) Alberola, A.; González, A. M.; González, B.; Laguna, M. A.; Pulido, F. J. Tetrahedron Lett. 1986, 27, 2027. (e) Komatsu, M.; Takamatsu, S.; Uesaka, M.; Yamamoto, S.; Ohshiro, Y.; Agawa, T. J. Org. Chem. 1984, 49, 2691. Ohshiro, Y.; Komatsu, M.; Uesaka, M.; Agawa, T. Heterocycles 1984, 22, 549.

Scheme I

N,N-dimethylhydrazones (N¹-(dimethylamino)-1-aza-1,3-butadienes),⁵ and the Lewis acid catalyzed intramolecular [4 + 2]cycloaddition reactions of in situ generated 2-(tert-butyldimethylsilyl)oxy]- and 2-[(trimethylsilyl)oxy]-1-aza-1,3-butadienes.^{6,7} In the conduct of synthetic studies on the [4 + 2] cycloaddition reactions of hetero dienes,^{8,9} we have examined alternative approaches to promote the 4π participation of 1-aza-1,3-butadienes in intermolecular [4 + 2] cycloaddition reactions. The complementary N1 or C3 substitution of an α,β -unsaturated imine with an electron-withdrawing substituent would be expected to accentuate the inherent electron-deficient nature of the Iaza-1,3-butadiene and accelerate its potential [4 + 2] cycloaddition reaction with electron-rich dienophiles in LUMOdiene-controlled Diels-Alder reactions.¹⁻² In addition, a bulky electron-withdrawing N1 substituent would be expected to preferentially decelerate

0002-7863/91/1513-1713\$02.50/0 © 1991 American Chemical Society

⁽¹⁾ Boger, D. L.; Weinreb, S. M. Hetero Diels-Alder Methodology in Organic Synthesis; Academic Press: San Diego, 1987.

⁽⁸⁾ Boger, D. L. Chem. Rev. 1986, 86, 781.

⁽⁹⁾ Boger, D. L.; Patel, M. In Progress in Heterocyclic Chemistry; Sus-chitzky, H.; Scriven, E. F. V., Eds.; Pergamon Press: New York, 1989; Vol. 1, p 30. Boger, D. L. Bull. Soc. Chim. Belg. 1990, 99, 599.

Table I

dienophile, R	conditions ^a temp (°C), time (h), solvent, pressure (kbar)	product, endo:exo (% yield)
3a , Et	25, 87, CH ₂ Cl ₂ , 12	2d, >20:1 (89)
3a , Et	110, 48, toluene	2d , >20:1 (79)
3b, CH ₂ Ph	25, 70, neat, 12	2e, >20:1 (74)
4b, CH_2Ph^b	25, 72, CH ₂ Cl ₂ , 12	2f , >20:1 (28)
5	25, 72, CH ₂ Cl ₂ , 12	2g , >20:1 (54)
5	140, 24, mesitylene	2g , >20:1 (23)
6	25, 76, CH ₂ Cl ₂ , 12	2h , >20:1 (82)
7	25, 96, CH ₂ Cl ₂ , 12	2i , (63)

^a A total of 5 equiv of dienophile employed unless otherwise indicated. ^bA total of 2 equiv of dienophile employed, 66% recovered diene.

1,2-imine addition relative to [4 + 2] cycloaddition and stabilize [4 + 2] cycloaddition product (deactivated enamine) to the reaction conditions while enhancing the electron-deficient nature of the diene. Herein, we provide full details of a comparative study of the 4π participation of N¹-substituted α,β -unsaturated imines in LUMO_{diene}-controlled Diels-Alder reactions that have revealed the general, well-defined 4π participation of α,β -unsaturated N-sulfonylimines in regiospecific and endo-specific inverse electron demand Diels-Alder reactions suitable for the diastereoselective preparation of substituted 1,2,3,4-tetrahydropyridines.¹⁰⁻¹⁴

N-Sulfonyl-1-aza-1,3-butadienes: Synthesis and Comparative [4 + 2] Cycloaddition Reactivity. Representative results of initial studies employing stable imine derivatives of 1-acetyl-1-cyclohexene are summarized in Scheme I. The use of derivatives of 1-acetylcyclohexene for initial study represented the selection of a test 1-aza-1,3-butadiene system (1) that is capable of imine tautomerization, (2) that possesses no selected s-Z- versus s-Ediene conformational bias, (3) that presents substantial dienedienophile steric interactions in the developing [4 + 2] transition state (N1, C2, C3, and C4 diene substituents), and (4) that suffers from the introduction of $A^{1,2}$ -strain accompanying the [4 + 2]cycloaddition. This latter effect generally conveys a preference for 1,2- versus 1,4-addition to such systems. Thus, the derivatives 2a-d were selected for initial comparison with expectations that the observation of [4 + 2] cycloaddition with electron-rich dienophiles would prove generally applicable. As illustrated by the results summarized in Scheme I, N¹-substitution of a 1aza-1,3-butadiene with an electron-withdrawing substituent $(-SO_2Ph, -P(O)Ph_2)$ was found to facilitate its participation in LUMO_{diene}-controlled Diels-Alder reactions. The N-(phenylsulfonyl)imine $1d^{15,16}$ and N-(diphenylphosphinyl)imine $1c^{17}$ proved to be stable imine derivatives capable of simple isolation and purification (SiO₂ or Florisil chromatography), both exhibited good thermal [4 + 2] cycloaddition reactivity with ethyl vinyl ether

 (10) Boger, D. L.; Kasper, A. M. J. Am. Chem. Soc. 1989, 111, 1517.
 (11) Boger, D. L.; Corbett, W. L.; Wiggins, J. M. J. Org. Chem. 1990, 55, 2999

(12) Boger, D. L.; Curran, T. T. J. Org. Chem. 1990, 55, 5439.
(13) Teng, M.; Fowler, F. W. Tetrahedron Lett. 1989, 30, 2481. Teng,
M.; Fowler, F. W. J. Org. Chem. 1990, 55, 5646.

 (14) Kim, J.-B.; Hall, H. K., Jr. Macromolecules 1988, 21, 1547.
 (15) Brown, C.; Hudson, R. F.; Record, K. A. F. J. Chem. Soc., Perkin Trans. 2 1978, 822. Brown, C.; Hudson, R. F.; Record, K. A. F. J. Chem. Soc., Chem. Commun. 1977, 540. Hudson, R. F.; Record, K. A. F. J. Chem. Soc., Chem. Commun. 1976, 831

(16) (a) Jennings, W. B.; Lovely, C. J. Tetrahedron Lett. 1988, 29, 3725 (b) Davis, F. A.; Lamendola, J., Jr.; Nadir, U.; Kluger, E. W.; Sedergran, T .; Panunto, T. W.; Billmers, R.; Jenkins, R., Jr.; Turchi, I. J.; Watson, W. H.; Chen, J. S.; Kimura, M. J. Am. Chem. Soc. 1980, 102, 2000. (c) Vish-H.; Chen, J. S.; Kimura, M. J. Am. Chem. Soc. 1980, 102, 2000. (c) Vishwakarma, L. C.; Stringer, O. D.; Davis, F. A. Org. Syn. 1988, 66, 203. (d) Albrecht, R.; Kresze, G.; Mlakar, B. Chem. Ber. 1964, 97, 483. Albrecht, R.; Kresze, G. Chem. Ber. 1965, 98, 1431. Melnick, M. J.; Freyer, A. J.; Weinreb, S. M. Tetrahedron Lett. 1988, 29, 3891. (17) Kruglyak, Y. L.; Leibovskaya, G. A.; Sretenskaya, I. I.; Sheluchenko, V. V.; Martynov, I. V. Zh. Obshch. Khim. 1968, 38, 943. Kruglyak, Y. L.; Landan, M. A.; Leibovskaya, G. A.; Martynou, I. V.; Saltykova, L. I.; Sokalskii M. A. Zh. Obshch. Khim. 1968, 30, 215. Kerzurenskia, B. Stece, W.

alskii, M. A. Zh. Obshch. Khim. 1969, 39, 215. Krzyzanowska, B.; Stec, W. J. Synthesis 1978, 521; 1982, 270. Brown, C.; Hudson, R. F .; Maron, A.: Record, K. A. F. J. Chem. Soc., Chem. Commun. 1976, 663. Hudson, R. F.; Brown, C.; Maron, A. Chem. Ber. 1982, 115, 2560.

 $(1c \simeq 1d \gg 1a,b)$, and the [4 + 2] cycloadducts 2c,d proved stable to isolation and purification.18

Given the ease of its preparation and the anticipated synthetic generality of working with sulfonamides, 1d was selected for further study. The results of a study of the scope of the Diels-Alder reactions of 1d with a range of electron-rich olefins are summarized in Scheme II and Table I.18 Both the thermal- and pressure-promoted [4 + 2] cycloaddition reactions cleanly provided the Diels-Alder cycloadducts, and the reactions proved to proceed predominately if not exclusively ($\geq 95\%$) through an endo transition state with full preservation of the dienophile olefin geometry in the stereochemistry of the reaction products. Even in instances where the endo [4 + 2] cycloaddition is decelerated by destabilizing steric interactions introduced by an additional dienophile cis substituent (e.g., 4b), the exclusive formation of the product derived from [4 + 2] cycloaddition through an endo transition state (e.g., 2f) was observed albeit with formation at slower rates.

The results of the extension of these observations to the LUMO_{diene}-controlled Diels-Alder reaction of ethyl vinyl ether with a full range of N-(phenylsulfonyl)-1-aza-1,3-butadienes derived from α,β -unsaturated ketones and aldehydes are summarized in Scheme III and Table II. The N-(phenylsulfonyl)imines proved to be readily accessible through the clean, homolytic rearrangement of in situ generated oxime O-phenylsulfinyl¹⁵ compounds (aldehyde and ketone precursors) or through the direct condensation of benzenesulfonamide with selected α,β -unsaturated aldehydes.¹⁶ In each instance, the thermal- or pressure-promoted [4 + 2] cycloaddition provided a single cycloadduct derived from the expected [4 + 2] cycloaddition regioselectivity that proved to be derived from predominate if not exclusive (≥95%) cycloaddition through an endo transition state. The N-phenylsulfonyl aldimines proved more reactive than N-phenylsulfonyl ketimines $(R^1 = H > R^1 = CH_3, C_6H_5)$, and the complementary addition of a C3 electron-withdrawing substituent to the azadiene ($R^2 =$ $CO_2R^1 \gg R^2 = H, CH_3$) substantially accelerated the N-(phenylsulfonyl)-1-aza-1,3-butadiene participation in the LUMO_{diene}-controlled Diels-Alder reaction. Thus, the reaction of N^1 -(phenylsulfonyl)imine 1j possessing the additional C3 electron-withdrawing substituent was found to react with 1,1dimethoxyethylene within 5 min at 25 °C to provide the Diels-Alder adduct 14 (79%). Further consistent with the characteristics of a concerted [4 + 2] cycloaddition reaction, the reactions were found to proceed with full preservation of the dienophile olefin

⁽¹⁸⁾ The [4 + 2] cycloaddition products were purified by chromatography on Florisil and on occasion have proven somewhat unstable to silica gel. For example, the cycloadducts 2g-i are not completely stable to this method of purification and 14 proved unstable to chromatography on Florisil. To date, we have not detected epimerization of the cycloadduct C2 center resulting from the conditions of purification and the products have proven configurationally stable.

Table II

diene, method (% yield)	dienophile	conditions: ^a equiv dienophile, temp or pressure, time (h), solvent	product, endo:exo (% yield)
1e, A (15)	3a	10, 60 °C (12), neat	8, (73)
1f , A (90)	3a	5, 12 kbar (80), CH ₂ Cl ₂	9, >20:1 (69)
1g, A (50)	3a	5, 12 kbar (45), CH ₂ Cl ₂	10 , >20:1 (77)
1h, B (50–68)	3a	5, 12 kbar (45), CH_2Cl_2	11a , >20:1 (72)
1h, A (28)	4b	5, 6 kbar (144), CH ₂ Cl ₂	11b, >20:1 (54)
1i, C (56)	3a	5, 12 kbar (45), CH ₂ Cl ₂	12, (72)
1i, A (55)	3a	10, 40 °C (11), CH ₂ Cl ₂	12, (82)
1j, A $(47)^{b}$	3a	5, 100 °C (12), dioxane	13, >20:1 (56)
1j	3a	10, 100 °C (72), dioxane	13, >20:1 (89)
1j	7	10, 25 °C (5 min), CH ₂ Cl ₂	14, (79)

^a All pressure-promoted reactions were conducted at 25 °C. ^b The (methylsulfonyl)imine was similarly prepared in 75% yield.

Table III. Theoretical Highest Occupied π Orbital (HOMO) and Lowest Unoccupied π Orbital (LUMO) of Azadienes and Enol Ether Dienophiles: AM1^a (MNDO)^b Results

diene	<i>E</i> (eV)			coefficients		
H ₂ C=CH-CH=CH ₂ HOMO LUMO	-9.4 (-9.2) 0.5 (0.4)	C1 0.56 (0.56) 0.57 (0.57)	C2 0.43 (0.44) -0.42 (-0.43)	C3 -0.43 (-0.44) -0.42 (-0.43)	C4 -0.56 (-0.56) 0.57 (0.57)	
H2C=CH-CH=NH HOMO LUMO	-10.1 (-10.0) 0.4 (0.3)	N1 0.46 (0.42) 0.50 (0.48)	C2 0.24 (0.20) -0.45 (-0.45)	C3 -0.59 (-0.62) -0.43 (-0.44)	C4 -0.62 (-0.63) 0.60 (0.61)	
H ₂ C = CHCH=NSO ₂ Ph HOMO LUMO	-11.1 (-10.8) -0.9 (-0.7)	N1 0.32 (0.39) 0.50 (0.47)	C2 0.11 (0.10) -0.58 (0.58)	C3 -0.47 (-0.66) -0.30 (-0.30)	C4 -0.46 (-0.62) 0.53 (0.57)	
H ₂ C=CH-C(CO ₂ CH ₃)=NSO ₂ Ph HOMO LUMO	-11.2 (-10.9) -1.1 (-0.7)	N1 0.32 (0.20) 0.53 (0.54)	C2 0.12 (0.10) -0.60 (-0.68)	C3 -0.55 (-0.68) -0.21 (-0.19)	C4 -0.55 (-0.64) 0.47 (0.34)	CO ₂ CH ₃ 0.05 (0.12) -0.10 (-0.14)
H2C=C(CO2CH3)-CH=NSO2Ph HOMO LUMO	-11.5 (-11.2) -1.3 (-0.8)	N1 0.41 (0.30) 0.40 (0.39)	C2 0.14 (0.11) -0.42 (-0.47)	C3 -0.58 (-0.64) -0.34 (-0.33)	C4 -0.54 (-0.58) 0.63 (0.51)	CO ₂ CH ₃ 0.04 (0.01) -0.18 (-0.05)
HC(CO ₂ CH ₃)=CH-CH=NSO ₂ Ph HOMO LUMO	-11.5 (-11.3) -1.5 (-0.6)	N1 0.32 (0.21) 0.43 (0.46)	C2 0.11 (0.09) -0.46 (-0.57)	C3 -0.47 (-0.63) -0.49 (-0.42)	C4 -0.49 (-0.63) 0.46 (0.47)	CO ₂ CH ₃ -0.02 (-0.03) 0.00 (0.08)
H ₂ C = CHOCH ₃ HOMO LUMO	-9.5 (-9.4) 1.4 (1.2)	OCH ₃ -0.51 (-0.46) 0.21 (0.20)	C1 0.48 (0.51) 0.72 (0.71)	C2 0.69 (0.71) -0.66 (-0.66)		

^a AM1: Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stewart, J. J. P. J. Am. Chem. Soc. 1985, 107, 3902. ^b MNDO: Dewar, M. J. S.; Thiel, W. J. Am. Chem. Soc. 1977, 99, 4894.

Table IV

16 R'	17 (% yield)	18 (% yield)	19 or 20 (% yield)	21 or 22, ^a endo:exo (% yield)
C ₆ H ₅	17a (94)	18a (82)	19a (69) 20a (64)	21a, >20:1 (80) 22a > 20:1 (61)
(CH ₂) ₅ CH ₃	17b (89)	18b (55)	19b (64)	21b, >20:1 (01) 21b, >20:1 (55)
CH3	17c (72)	18c (72)	206 (59) 19c (45)	226, > 20:1 (53) 21c, > 20:1 (51)

^a A total of 4 equiv of ethyl vinyl ether employed.

stereochemistry, to exhibit little solvent dependency on the [4 + 2] cycloaddition rate (k_{rel} (ethyl vinyl ether): CH₃CN (2), CH₂Cl₂ (1.5), toluene (1) for **1e** (eq 1)) and were found to react more

rel. rates: CH3CN (2), CH2Cl2 (1.5), toluene (1)

rapidly with trans 1,2-disubstituted dienophiles than with cis 1,2-disubstituted dienophiles (1-(benzyloxy)propene: k(E)/k(Z)= 6.3 for **1h**).¹⁹ In addition, even the α,β -unsaturated N¹- (phenylsulfonyl)imines that preferentially exist in the extended s-E-diene conformation (e.g., **1h**) were found to participate readily in the LUMO_{diene}-controlled Diels-Alder reactions. The stereochemistry of the [4 + 2] cycloaddition reaction products was established by spectroscopic techniques²⁰ and was unambiguously confirmed with the single-crystal X-ray structure determination of adduct 9.^{21a}

(20) The X-ray crystal structure of **9** was consistent with the spectroscopically (¹H NMR) assigned structure and stereochemistry ($J_{C2-H_{eq}}/C3-H_{ax}$ $\leq 2.0-2.5$ Hz, $J_{C2-H_{eq}}/C3-H_{eq} \leq 4.0$ Hz, $J_{C3-H_{ax}}/C4-H_{eq} = 7.0-9.0$ Hz, $J_{C3-H_{eq}}/C3-H_{ax}$ ≈ 4.0 Hz, $J_{C3-H_{ax}}/C4-H_{eq} = 8.6$ Hz, $J_{C3-H_{eq}}/C3-H_{eq} = 4.0$ Hz, $J_{C3-H_{ax}}/C4-H_{eq} = 8.6$ Hz, $J_{C3-H_{eq}}/C3-H_{eq} = 4.0$ Hz, $J_{C2-H_{eq}}/C3-H_{ax}$ the stereochemistry of **2c**-1 and **8-14** was assigned spectroscopically. For example, the all-cis stereochemistry for **11b** and the axial C2 OEt orientation were established spectroscopically: $J_{C2-H_{eq}}/C3-H_{ax} = 2.3$ Hz; $J_{C3-H_{ex}}/C4-H_{eq} = 7.7$ Hz, $J_{C2/H2} = 166$ Hz. The 'J for an axial C-H adjacent to N (or O) in a six-membered ring is significantly smaller (ca. 10 Hz) than 'J for an equatorial C-H, $J_{C-H_{eq}} < J_{C-H_{eq}}$ Takeuchi, Y. J. Chem. Soc., Chem. Commun. **1974**, 210; Binst, G. V.; Tourwe, D. Heterocycles **1973**, 1, 257. This characteristically large C2/H2 coupling constant proved diagnostic in the conformational assignment (i.e., axial OR) and subsequent spectroscopic interpretation of coupling constants.

(21) (a) Full details of the X-ray structure determination of 9 have been provided elsewhere.¹⁰ Supplementary material includes an ORTEP representation of 9 that illustrates the C2/C4 relative stereochemistry, the axial orientation of C2 OEt, the pseudoaxial orientation of C4 phenyl, and the near-planar N^1 -nitrogen that lies approximately 0.21 Å above the plane of the attached substituents syn to the C2 OEt. (b) Full details of the X-ray structure determination of **21a** and **28a** have been provided elsewhere.¹¹ Supplementary material includes an ORTEP representation of **21a** and **28a**. (c) Full details of the X-ray structure determinations of **40**-endo, **45**-endo, and **48**-endo have been provided elsewhere.¹² Supplementary material includes ORTEP representations of the structures.

⁽¹⁹⁾ Treatment of 1h with a 64:36 mixture of (Z)-:(E)-benzyl 1-propenyl ether (55% yield, 42 h, toluene, 6 kbar, 25 °C) provided a 22:78 mixture of the corresponding [4 + 2] cycloaddition products, k(E)/k(Z) = 6.3.

Scheme III

Computational studies summarized in Table 11I support the observation of the expected [4 + 2] cycloaddition regioselectivity and endo diastereoselectivity. The magnitude of the LUMO_{diene} C4 coefficient proved largest of the diene termini supporting the

Figure 1.

observed cycloaddition regioselectivity. In the instances where the diene termini LUMO coefficients proved comparable in magnitude, the strong secondary orbital interactions (LUMOdiene C2 and HOMO_{dienophile} OR) may serve to dictate the reaction regioselectivity as well as the reaction diastereoselectivity. The sequential NI and C3 addition of electron-withdrawing substituents (-SO₂Ph and -CO₂Me, respectively) substantially lowers the azadiene $E_{\rm LUMO}$ supporting the observed rate acceleration in the LUMO_{diene}-controlled [4 + 2] cycloaddition. In addition, the computational studies suggest that the unusually high endo diastereoselectivity may be derived in part from a pronounced stabilizing secondary orbital interaction between diene C2 (LUMO) and the dienophile OR (HOMO). However, the degree of endo diastereoselectivity observed with the N-sulfonyl-1-aza-1,3-butadienes exceeds that customarily observed in thermal [4 + 2] cycloaddition reactions, suggesting that this stabilizing secondary orbital interaction may only be part of the origin of the diastereoselectivity. In addition and as a consequence of the boat transition state for the [4 + 2] cycloaddition reaction, the lone pair on nitrogen and the σ C-O bond of the dienophile lie trans periplanar to each other in the preferred endo transition state, suggesting a $n-\sigma^*$ stabilization of the endo transition state comparable to that responsible for the ground-state anomeric effect. A similar stabilizing $n-\sigma^*$ interaction is not present in the exo [4 + 2] cycloaddition transition state, and this difference may further contribute to the unusually high endo diastereoselectivity observed in the Diels-Alder reactions of such systems (Figure 1).

Room-Temperature, Endo-Specific 1-Aza-1,3-butadiene Diels-Alder Reactions: Acceleration of the LUMO_{diene}-Controlled [4 + 2] Cycloaddition Reactions through Noncomplementary Azadiene Substitution. In the preceding efforts, the 4π participation of simple, stable N-(phenylsulfonyl)-1-aza-1,3-butadienes in regiospecific and endo-specific inverse electron demand Diels-Alder reactions was observed under the mild thermal conditions of ca. 100 °C, and the complementary substitution of the 1-aza-1,3butadienes with a C3 electron-withdrawing substituent was shown to predictably accelerate the [4 + 2] cycloadditioin reaction to the extent that the reaction may be observed at 25 °C. In contrast to the complementary C3 addition of an electron-withdrawing substituent to the 1-aza-1,3-butadiene system, the noncomplementary C2 or C4 addition of an electron-withdrawing group would not be expected to additionally stabilize a developing zwitterionic or biradical transition state for a [4 + 2] cycloaddition reaction. However, the AM1 computational studies detailed in Table 111 illustrate that the noncomplementary C2 and/or C4 addition of an electron-withdrawing substituent to the 1-azadiene lowers the LUMO_{diene} and may serve to accelerate its participation in a LUMO_{diene}-controlled reaction. This, as well as the effect of the size of sulfonyl substituent on the diastereoselectivity of the [4 + 2] cycloaddition reaction, was examined through the preparation and study of N-(phenylsulfonyl)- and N-(methylsulfonyl)-2-(ethoxycarbonyl)-1-aza-1,3-butadienes 19 and 20.

Scheme IV

Table V

dienophile. R	conditions: ^a temp (°C), time (h), solvent, pressure (kbar)	product, endo:exo (% vield)
		(10)1012/
3a . Et	25, 24, CH ₂ Cl ₂	21a . $> 20:1$ (80)
26 CH Dh	25 15 CH CI	27h >20:1 (84)
30 , CH ₂ H	$25, 15, CH_2CI_2$	270, 20.1(04)
4a , Et	25, 120, CH_2Cl_2	28a , >20:1 (49)
4a , Et	25, 96, CH ₂ Cl ₂ , 6.2	28a , >20:1 (54)
4b, CH ₂ Ph	25, 104, CH ₂ Cl ₂ , 6.2	28b , >20:1 (50)
23a, H	25, 96, CH ₂ Cl ₂	29a , (0)
23a, H	80, 7 days, toluene	29a , (0)
23a, H	25, 67, CH ₂ Cl ₂ , 6.2	29a , >20:1 (37)
23a, H	25, 97, CH ₂ Cl ₂ , 13.0	29a , >20:1 (48)
23b , OCH ₃	25, 72, CH ₂ Cl ₂	29b , >20:1 (12)
23b, OCH ₃	80, 48, toluene	29b , >20:1 (46)
23b, OCH ₃	25, 97, CH ₂ Cl ₂ , 13.0	29b , >20:1 (87)
24a, Et	25, 36, CH ₂ Cl ₂ 6.2	30a, >20:1 (65)
7	25, 1, CH_2Cl_2	31, (58)
25	25, 97, CH ₂ Cl ₂ , 6.2	32 , >20:1 (50)
26	25, 97, CH ₂ Cl ₂ , 6.2	33 , >20:1 (68)

^aA total of 4 equiv of dienophile employed.

The 4-substituted N-(phenylsulfonyl)- and N-(methylsulfonyl)-2-(ethoxycarbonyl)-1-aza-1,3-butadienes 19 and 20 were prepared through Wittig reaction of the stabilized phosphorane generated in situ from the phosphonium salt 15²² (K₂CO₃, 25 °C, DMF) with aldehydes (25 °C, DMF, 20-40 h, 94-72%) followed by acid-catalyzed removal of the tetrahydropyranyl (THP) group (HOAc/H₂O/THF, 3:1:1, 55 °C, 37-53 h),²³ O-phenylsulfinyl or O-methylsulfinyl formation (PhSOCl or CH₃SOCl, Et₃N, 0 °C, CCl4 or Et₂O, 0.5-1.0 h), and subsequent in situ homolytic rearrangement (25 °C, 1-3 h) to provide 19 and 20 (Scheme IV and Table IV).²⁴ The results of the [4 + 2] cycloaddition reaction of 19 and 20 with ethyl vinyl ether (25 °C, CH₂Cl₂, 0.2-0.5 M, 17-26 h) conducted at room temperature are detailed in Table IV, and the comparative results of the reaction of 19a with a range of dienophiles are summarized in Scheme V and Table V. The Scheme V

assigned stereochemistry of the [4 + 2] cycloadducts was derived initially from diagnostic ¹H NMR chemical shifts and coupling constants,²⁵ was supported by 2-D NOE experiments,²⁶ and was unambiguously established with the single-crystal X-ray structure determinations of 21a^{21b} and 28a^{21b} coupled with chemical correlation (e.g., 30).

The [4 + 2] cycloaddition reactions of 19 and 20 with vinyl ethers were determined to proceed predominantly if not exclusively (≥95%) through an endo transition state, and the endo diastereoselectivity proved independent of the size of the N-sulfonyl substituent $(\dot{R}^3 = Ph = \dot{C}H_3)$. In addition, the [4 + 2] cycloaddition reactions were found to proceed with full preservation of the dienophile olefin geometry in the stereochemistry of the reaction products (Scheme V), to exhibit little solvent dependency on the [4 + 2] cycloaddition rate (k_{rel} (ethyl vinyl ether): CH₃CN and $CH_2Cl_2(2)$, $C_6H_6(1)$ for **19a**), and the noncomplementary C2 addition of an electron-withdrawing group (-CO₂Et) to the N-(phenylsulfonyl)-1-aza-1,3-butadiene was determined to substantially accelerate the rate of [4 + 2] cycloaddition, eqs 2 and 3 (k(19a)/k(1f or 1h) > 20).²⁷ Further consistent with the characteristics of a concerted Diels-Alder reaction, trans 1,2disubstituted dienophiles were found to react more rapidly than cis 1,2-disubstituted dienophiles with 19a (k(E)/k(Z) = 9.2)atm), 5.6 (6.2 kbar) for 1-ethoxypropene),28 the cis 1,2-disubstituted dienophiles exhibited a preferential pressure-induced rate acceleration, and the [4 + 2] cycloaddition reactions of the cis

⁽²²⁾ For the related preparation and Wittig reactions of EtO₂CC-(NOCH₃)CH₂PPh₃+Br⁻, see: Bicknell, A. J.; Burton, G.; Elder, J. S. Tetrahedron Lett. **1988**, 29, 3361.

⁽²³⁾ Since the conduct of this work, we have found that deprotection of the tetrahydropyranyl ethers may be accomplished in shorter reaction times by using catalytic Amberlyst H-15 in an ethanolic solution of the tetrahydropyranyl oxime. Bongini, A.; Cardillo, G.; Orena, M.; Sergio, S. Synthesis 1979, 618.

⁽²⁴⁾ Consistent with intuitive expectations, the N-sulfonylimines 19 and 20 proved more sensitive to hydrolysis by adventitious water than N-sulfonyl azadienes lacking the C2 ethoxycarbonyl group but may be purified by rapid chromatography (SiO₂, Florisil) with partial but not extensive loss of material.

⁽²⁵⁾ Characteristic coupling constants (C2-OR axial): $J_{C2-H_{c0}/C3-H_{c0}} = -2.5-4.4$ Hz. $J_{C2-H_{c0}/C4-H_{c0}} = 1.7-3.3$ Hz, 2.7-5.0 Hz, $J_{C2-H_{ex}/C3-H_{ax}} = 2.5-4.4$ Hz, $J_{C3-H_{ex}/C4-H_{ex}} = 1.7-3.3$ Hz, $J_{C3-H_{ax}/C4-H_{ex}} = 8.9-9.3$ Hz, $J_{C4-H_{ex}/C4-H_{ex}} = 3.2-3.6$ Hz, $J_{C2/H2} = 163-158$ Hz. The exceptions (**30**, **32**, **29**) may exist in the all-equatorial conformation: for **30** $J_{C2+H_{4k}/C3+H_{4k}} = 4.4$ Hz, $J_{C3+H_{4k}/C4+H_{4k}} = 13$ Hz, $J_{C4+H_{4k}/C5+H} = 3.6$ Hz, $I_{C2/H2}$ = 156.6 Hz; for **32** ${}^{1}J_{C2/H2} = 153.7$ Hz; for **29** ${}^{1}J_{C2/H2} = 140-145$ Hz. The single-crystal X-ray structure determinations of 21a and 28a established the C2/C4 and C2/C3/C4 cis relative stereochemistry that must arise through endo [4 + 2] cycloaddition and proved consistent with the 'H NMR specendo [4 + 2] cycloaddition and proved consistent with the transformation of the transfo

material.

⁽²⁷⁾ No trace of the Diels-Alder products derived from 1h or 1f was detected in the reaction mixture.

1,2-disubstituted dienophiles were found to proceed predominantly (>95%) through an endo transition state despite the increased destabilizing steric interactions (e.g., **28a**). The azadiene **19a** proved sufficiently reactive to undergo intermolecular [4 + 2] cycloaddition with a full range of dienophiles including the relatively unreactive olefins **23** (R = OCH₃ > H, Scheme V), suggesting a broad and general scope for such 1-aza-1,3-butadiene Diels-Alder reactions.²⁹ In addition, the studies demonstrate that the *noncomplementary* addition of a C2 electron-withdrawing substituent ($-CO_2Et$) to the *N*-sulfonyl-1-aza-1,3-butadienes predictably accelerates their 4π participation in LUMO_{diene}-controlled [4 + 2] cycloaddition reactions, maintains the expected cycloaddition regioselectivity (>95%), and illustrates that the reactions display characteristics consistent with a concerted LUMO_{diene}-controlled [4 + 2] cycloaddition reaction.

Room-Temperature, Endo-Selective LUMO_{diene}-Controlled [4 + 2] Cycloaddition Reactions of N-Sulfonyl-4-(ethoxycarbonyl)-1-aza-1,3-butadienes. Concurrent with our efforts, Fowler and Teng¹³ have examined the intra- and intermolecular [4 + 2] cycloaddition reactions of N-acyl-2-cyano-1-aza-1,3-butadienes and have disclosed that such dienes participate in [4 + 2] cycloaddition reactions with electron-rich dienophiles with a reactivity, regioselectivity, and diastereoselectivity comparable to the N-sulfonyl-2-(ethoxycarbonyl)-1-aza-1,3-butadienes. However, in contrast to our observation of the 2-aryl-1,2,3,4tetrahydropyridine cycloaddition regioisomer derived from the [4 + 2] cycloaddition of styrenes with **19a**, Fowler and Teng¹³ have described the observation of the predominant 3-aryl-1,2,3,4tetrahydropyridines with **34** albeit in mixtures (8–1:1) with the 2-aryl regioisomer, eq 4. Consequently, in efforts to define the

(28) The relative rates of [4 + 2] cycloaddition were derived from product distributions obtained from the reaction of a mixture of (Z)- and (E)-ethyl-1-propenyl ether (2.8:1, 10 equiv) with **19a** (25 °C, 96 h, CH₂Cl₂, 1 atm), **28a/20a** ((1.0:3.3), 54% and 25 °C, 96 h, CH₂Cl₂, 6.2 kbar), **28a/30a** (1.0:2.0), 65%).

Boger et al.

Table VI

		conditions: temp (°C),	product,
	dienophile,	time (h), solvent,	endo:exo
diene	R (equiv)	pressure (kbar)	(% yield)
35	3a, Et (5)	21, 46, CH ₂ Cl ₂	37a, >20:1 (82)
35	3b , CH_2Ph (5)	21, 46, CH_2Cl_2	37b , >20:1 (88)
36	3a, Et (5)	21, 56, CH ₂ Cl ₂	38a , >20:1 (73)
35	24a, Me (3)	21, 37, CH ₂ Cl ₂	39a , 2.2:1 (93)
36	24a, Me (3)	21, 43, CH ₂ Cl ₂	39b , 2.2:1 (91)
35	24c, Ph (2.5)	21, 61, CH,Cl,	40, 5:1 (61)
35	24c, Ph (2.5)	21, 47.5, CH ₂ Cl ₂ , 13.3	40, 4:1 (57)
35	23a (5)	80, 69, C ₆ H ₆	41, 6.5:1 (45)
35	23a (2.5)	21, 45.5, CH ₂ Cl ₂ , 13.3	41 , 11:1 (48)
35	4a, Me (4)	21, 69, CH ₂ Cl ₂	42a, >20:1 (48)
35	4a, Me (2)	21, 45.5, CH,Cl, 13.3	42a, >20:1 (50)
36	4a, Me (4)	21, 66, CH ₂ Cl ₂	42b, >20:1 (36)
35	4c, Ph (2)	40, 64, CH ₂ Cl ₂	43 , 1:3 (41)
35	4c, Ph (2.5)	21, 49.5, CH ₂ Cl ₂ , 13.3	43 , 2.2:1 (42)
35	5 (5)	0, 82, CH ₂ Cl ₂	44, >20:1 (56)
35	26 (3)	21, 49.5, CH ₂ Cl ₂ , 13.3	45, >20:1 (42)
35	26 (3)	80, 21, C ₆ H ₆	45, 8:1 (32)
35	25 (3)	21, 135, ČH,Cl,	46, 2.4:1 (71)
35	25 (2.5)	21, 49.5, CH ₂ CI ₂ , 13.3	46, 2.2:1 (74)
35	23b, H (5)	21, 46, CH ₂ Cl ₂	47, >20:1 (63)
35	23c, Me (2)	80, 53, C ₆ H ₆	48 , 4:1 (44)
35	23c, Me (2.5)	21, 47.5, CH ₂ Cl ₂ , 13.3	48 , 4:1 (60)

origin of the differences in the two systems, we have examined the [4 + 2] cycloaddition reactions of *N*-(phenylsulfonyl)- and *N*-(methylsulfonyl)-4-(ethoxycarbonyl)-1-aza-1,3-butadiene (**35** and **36**).

Controlled ozonolysis of ethyl sorbate³⁰ followed by condensation of ethyl 4-oxo-2-butenoate with benzene- or methanesulfonamide

⁽²⁹⁾ Diene **19a** failed to participate in a [4 + 2] cycloaddition reaction with l-octene, methyl acrylate, and *p*-benzoquinone, and diene **35** failed to react with methyl acrylate and *p*-benzoquinone under reaction conditions detailed herein.

(0.5 equiv of TiCl₄, CH₂Cl₂, 0 °C for 8 h) provided N-(phenylsulfonyl)- and N-(methylsulfonyl)-4-(ethoxycarbonyl)-1-aza-1,3-butadiene (35 and 36, 60-46%).³¹ The results of a survey of [4 + 2] cycloaddition reactions of 35 and 36 with a full range of dienophiles are summarized in Scheme VI and Table VI. The structure and stereochemistry of the [4 + 2] cycloadducts were assigned initially on the basis of diagnostic ¹H NMR chemical shifts and coupling constants,³² were firmly established through NOE difference experiments,²⁶ and were unambiguously established with the single-crystal X-ray structure determinations^{21c} of 40-endo, 45-endo, and 48-endo in conjunction with the deliberate epimerization and interconversion studies.²⁶

The [4 + 2] cycloaddition reactions of 35 and 36 were established to proceed predominantly or exclusively (2.2:1 to > 20:1)through an endo transition state independent of the size of the N-sulforyl substituent ($R^1 = Ph = CH_3$). Like observations made in earlier studies, the reactions of 35 and 36 with simple vinyl ethers (3 and 5), cis 1,2-disubstituted vinyl ethers possessing a small C2 substituent (CH₃ or OAc, 4a and 26), and unsubstituted styrenes (23a,b) proceed with high (11:1 for 23a) or near exclusive (>20:1 for 3, 4a, 5, 23b, and 26) endo diastereoselectivity. In contrast to the endo-specific cycloaddition reactions of the preceding dienes, the reactions of 35 and 36 with trans 1,2-disubstituted dienophiles (23c, 24, 25) and a cis 1,2-disubstituted vinyl ether possessing a large C2 substituent (Ph, 4c) proceed predominantly (2.2-5:1) but not exclusively through an endo transition state. The modest endo diastereoselectivity of the reaction of the N-phenylsulfonyl diene 35 with (E)-1-ethoxypropene proved comparable to the results obtained with the N-methylsulfonyl diene 36 (2.2:1), highlighting the observation that the cycloaddition diastereoselectivity has proven independent of the size of the N-sulfonyl substituent. Consistent with expectations, the endo diastereoselectivity decreases with increasing reaction temperature and increases with increasing reaction pressure. From a comparison of the thermal and high pressure (13 kbar) results for the preparation of 43 (endo versus exo), the estimate for the $\Delta\Delta V^*$ (endo versus exo transition state) derived from the Drude-Nernst equation is $-4 \text{ cm}^3/\text{mol}$ (25 °C). The [4 + 2] cycloaddition reactions were found to exhibit little solvent dependency on the cycloaddition rate ($k_{rel}(35)$: CH₃CN (0.9), CH₂Cl₂ (1), C₆H₆ (1) for ethyl vinyl ether)³³ and were found to proceed with full preservation of the dienophile olefin geometry in the stereochemistry of the reaction products. Further characteristic of a concerted Diels-Alder reaction, trans 1,2-disubstituted dienophiles were found to react more rapidly than cis 1,2-disubstituted dienophiles with 35 (k(E)/k(Z) = 13.4 (1 atm) for 1-ethoxypropene).³⁴ Most impressively, the noncomplementary C4 addition of an electron-withdrawing group to the N-(phenylsulfonyl)-1-aza-1,3-butadiene was found to substantially accelerate the rate of [4 + 2] cycloaddition [k(35)/k(1h or 1i) > 20], eqs

perimental section. (32) Characteristic coupling constants: C2-OR axial $J_{C2-H_{edd}/C3-H_{ex}} = 1.2-2.3$ Hz, $J_{C2-H_{edd}/C3-H_{ex}} = < 1-2.7$ Hz, $J_{C3-H_{ex}/C4-H_{eq}} = 5.5-7.6$ Hz, $J_{C3-H_{edd}/C4-H_{eq}} = 1.2-2.5$ Hz; C2-aryl axial $J_{C2-H_{edd}/C3-H_{ex}} = 3.7-5.1$ Hz, $J_{C3-H_{edd}/C3-H_{eq}} = < 1$ Hz, $J_{C3-H_{edd}/C4-H_{eq}} = 6.8-7.0$ Hz, $J_{C3-H_{edd}/C3-H_{ex}} < 1$ Hz. (33) The solvent rate study was conducted in deuterated solvents and monitored by 'H NMR (300 or 500 MHz) where the comparison of the amount of starting material to product could easily be determined. A solution of 35 in solvent was cooled to 0°C and treated with ethyl vinyl ether (5 equiv). (34) A solution of 35 (CH-CL, 0.0°C) was treated with a mixture of (Z).

Table VII. C2-H2 Coupling Constants (Hz, CDCl, 50 Hz)²⁰

			(,		· ·	
8	161	27b	159	39-en do	164	
9	164	28a	159	40-en do	166	
11a	159	28b	158	41-en do	144	
11b	166	29a	141	42-endo	162	
12	151	29b	144	43-endo	162	
21a	159	30a	157	43-exo	164	
21b	159	32	154	45-endo	166	
21c	159	33	160	47-endo	142	
22a	163	37a-endo	164	48-endo	137	
22b	163	37b-endo	159			
22c	162	38b-endo	164			
						_

cloaddition reactions with a full range of dienophiles, including ketene acetals, substituted vinyl ethers, (E)- and (Z)-2-benzyloxy vinyl acetate, and the relatively unreactive alkenes 23 ((k-1)(23b)/k(23a) > 20) (Scheme VI). Notably, even the styrenes provide a single cycloaddition regioisomer in which the inherent regioselectivity of the [4 + 2] cycloaddition reaction is unaltered by the diene C4 ethoxycarbonyl group and the room-temperature, endo-specific reaction of $23b (23b \gg 23a)$ is consistent with the diene participation in a LUMO_{diene}-controlled Diels-Alder reaction. Remarkably, under pressure-promoted reaction conditions (21 °C, 13.3 kbar, CH₂Cl₂, 6 days), diene 35 proved sufficiently reactive to undergo [4 + 2] cycloaddition with the unactivated dienophile, 1-octene, to provide a single cycloaddition regioisomer derived through the compact endo transition state albeit in modest conversion (18%, 49).²⁹ Thus, the studies demonstrate that the noncomplementary C4 addition of an electron-withdrawing group $(-CO_2Et)$ to the electron-deficient 1-azadienes accelerates their 4π participation in LUMO_{diene}-controlled [4 + 2] cycloaddition reactions, maintains the [4 + 2] cycloaddition regioselectivity and endo diastereoselectivity of the parent N-sulfonyl-1-aza-1,3-butadienes, and that the [4 + 2] cycloaddition reactions display characteristics consistent with concerted LUMO_{diene}-controlled [4 + 2] cycloaddition reactions.

Applications of the [4 + 2] cycloaddition reactions of Nsulfonyl-1-aza-1,3-butadienes are in progress, and the results of such studies will be reported in due course.38

Experimental Section³⁶

General Procedures for the Preparation of α,β -Unsaturated N-(Phenylsulfonyl)imines. Method A: 1-(1-Cyclohexenyl)-1-[(phenylsulfonyl)-

⁽³⁰⁾ Stotter, P. L.; Eppner, J. B. Tetrahedron Lett. 1973, 2417.

⁽³¹⁾ Unlike simple N-sulfonylimines, 35 and 36 proved sensitive to hydrolysis by adventitious water and could not be purified by chromatography without extensive loss of material. All yields of cycloadducts of **35** and **36** are based on pure material isolated by chromatography (Florisil, 100-200 mesh) or recrystallization. Cycloadducts with endo/exo ratios of 5:1 or less were separated chromatographically and independently characterized fully. Cycloadducts with endo/exo ratios of 11:1 or greater were separated and the major diastereomer characterized fully. Endo/exo diastereomer ratios were established spectroscopically (¹H NMR, integration) as detailed in the experimental section.

⁽³⁴⁾ A solution of **35** (CH₂Cl₂, 0 °C) was treated with a mixture of (Z)-and (E)-ethyl-1-propenyl ether (2.8:1, 20 equiv) and stirred while gradually warming to 21 °C. After 44 h, a 4.8:1 ratio of cycloadducts arising from (E)and (Z)-ethyl 1-propenyl ether, respectively, was observed by 'H NMR (300 MHz, CDCl₃).

⁽³⁵⁾ A solution of 35 (0.16 mmol) and diene 1i/1h (0.16 mmol) in CH₂Cl₂ was cooled to 0 °C and tr. ted with ethyl vinyl ether (0.08 mmol). Inspection of the crude product by ¹H NMR (500 MHz, CDCl₃) showed a >20:1 (37a/11a or 12) ratio of products after 52 h.

iminojethane (1d). A solution of 1-acetylcyclohexene oxime (2.00 g, 14.4 mmol) in carbon tetrachloride (100 mL, 0.14 M) cooled to 0 °C under nitrogen was treated sequentially with triethylamine (1.75 g, 2.40 mL, 17.3 mmol, 1.2 equiv) and benzenesulfinyl chloride (2.54 g, 1.95 mL, 15.8 mmol, 1.1 equiv), and the resulting reaction mixture was stirred at 0 °C for 15 min. The triethylamine hydrochloride was removed by filtration, and the filtrate was stirred at 25 °C for 12 h under nitrogen. The intermediate *O*-phenylsulfinyl oximes were observed by TLC and were found to have a slightly higher R_f value than the $\alpha_{,\beta}$ -unsaturated *N*-(phenylsulfonyl)imines. The reaction mixture was washed with water (2 × 100 mL), dried (MgSO₄), filtered, and concentrated in vacuo. Moisture-sensitive imines were not washed with water. Flash chromatography (SiO₂, 5 cm × 13 cm, 10% EtOAc/hexane eluant) afforded pure 1d (2.60 g, 3.79 g theoretical, 69%) as a pale yellow oil.

Method B: (E)-3-Phenyl-1-[(phenylsulfonyl)imino]-2-propene (1h). A solution of cinnamaldehyde (2.00 g, 15.1 mmol) in toluene (150 mL) was treated with benzenesulfonamide (2.62 g, 16.6 mmol, 1.1 equiv) and MgSO₄ (2 g/mmol, 30.0 g), and the reaction mixture was stirred at reflux for 120 h. The reaction mixture was cooled to room temperature, the MgSO₄ was removed by filtration, and the filtrate was concentrated in vacuo. Flash chromatography (SiO₂, 6 cm × 13 cm, 15% EtOAc/ hexane eluant) afforded 1h (2.05 g, 4.10 g theoretical, 50%) as a pale yellow solid.

Method C: 2-Methyl-1-[(phenylsulfonyl)imino]-2-propene (1i). A solution of methacrolein (2.00 g, 28.5 mmol) in dichloromethane (150 mL) was cooled to 0 °C under nitrogen and treated with triethylamine (8.65 g, 11.9 mL, 85.5 mmol, 3.0 equiv) and benzenesulfonamide (4.48 g, 28.5 mmol, 1.0 equiv). Titanium tetrachloride (2.97 g, 15.7 mmol, 0.55 equiv) was added dropwise to the reaction solution, and the mixture was stirred for an additional 30 min at 0 °C. The titanium salts were removed by filtration of the reaction mixture through Celite. The Celite pad was washed with dichloromethane (150 mL), and the combined filtrates were concentrated in vacuo to provide the reactive (phenyl-sulfonyl)imine 1i. Rapid purification (SiO₂, 6 cm \times 10 cm, 15% Et-OAc/hexane eluant) afforded 1i (3.32 g, 5.96 g theoretical, 56%) as a clear oil that was used immediately in subsequent reactions.

General Procedure for the [4 + 2] Cycloaddition Reactions of α,β -Unsaturated N-(Phenylsulfonyl)imines. Pressure-Promoted [4 + 2] Cycloaddition, 1-(1-Cyclohexenyl)-1-[(phenylsulfonyl)imino]ethane (1d, 208 mg, 0.790 mmol) was placed in a Teflon tube sealed with a brass clamp at one end and treated with a solution of ethyl vinyl ether (285 mg, 3.95 mmol, 5.0 equiv) in dichloromethane (0.79 mL). The mixture was purged with nitrogen and sealed with a brass clamp with the exclusion of air/nitrogen. The reaction vessel was placed in a pressure reactor (13 kbar) at 25 °C for 87 h. After depressurization, the reaction mixture was transferred to a round-bottom flask and concentrated in vacuo. Flash chromatography (Florisil, 100-200 mesh, 2 cm \times 18 cm, 5% EtOAc/hexane eluant) afforded pure **2d** (235 mg, 265 mg theoretical, 89%) as a pale yellow solid.

Thermal Cycloaddition. A solution of 1d (0.40 g, 1.5 mmol) in mesitylene (3.0 M, 0.48 mL) was placed in a Kontes vial and treated with ethyl vinyl ether (0.54 g, 7.5 mmol, 0.72 mL, 5.0 equiv). The reaction vessel was purged with nitrogen, sealed, and placed in an oil bath (115 °C) for 48 h. The cooled reaction mixture was transferred to a roundbottom flask and concentrated in vacuo. Flash chromatography (Florisil, 100-200 mesh, 2 cm × 13 cm, 5% EtOAc/hexane eluant) afforded 2d (0.40 g, 0.50 g theoretical, 80%) as a pale yellow solid.

1-($\overline{1}$ -Cyclohexenyl)-1-{(diphenylphosphinyl)imino]ethane (1c): ¹H NMR (CDCl₃, 300 MHz, ppm) 7.93 (4 H, m), 7.38 (6 H, m), 6.80 (1 H, m, CH=C), 2.60 (3 H, s, CH₃), 2.50 (2 H, m), 2.25 (2 H, m), 1.66 (4 H, m); ¹³C NMR (CDCl₃, 75 MHz, ppm) 182.0, 140.8, 140.4, 139.3, 136.0, 134.3, 131.5, 131.0, 128.2, 128.1, 26.4, 24.6, 22.3, 21.4, 21.2; IR (neat) ν_{max} 3056, 2930, 1616, 1438, 1276, 1248, 1200, 1120, 998, 860, 796, 724, 696 cm⁻¹; EIMS *m/e* (relative intensity) 323 (43, M⁺), 246 (13), 216 (21), 201 (base), 157 (18), 122 (68), 77 (89); CIMS (2-methylpropane) *m/e* (relative intensity) 324 (M + H⁺, base); EIHRMS *m/e* 323.1439 (C₂₀H₂₂NOP requires 323.1439).

1-(1-Cyclohexenyl)-1-[(phenylsulfonyl)imino]ethane (1d): mp 56-59 °C (EtOAc/hexane); ¹H NMR (CDCl₃, 300 MHz, ppm) 7.99 (2 H, d, J = 8 Hz), 7.50 (3 H, m), 6.90 (1 H, t, J = 4 Hz, C==CH), 2.66 (3 H, s, CH₃), 2.25 (2 H, m), 2.15 (2 H, m), 1.50 (4 H, m); ¹³C NMR (CDCl₃, 75 MHz, ppm) 180.0 (e), 142.4 (o), 141.7 (e), 138.7 (e), 132.0 (o), 128.4 (o), 126.3 (o), 26.5 (e), 23.8 (e), 21.6 (e), 20.4 (e), 18.8 (o); IR (neat) ν_{max} 3064, 2936, 2862, 1626, 1566, 1480, 1448, 1384, 1306, 1254, 1152, 1090, 1024, 994, 952, 860 cm⁻¹; EIMS m/e (relative intensity) 263 (2, M⁺), 157 (10), 141 (13), 122 (33), 109 (13), 93 (16), 81 (31), 79 (28), 77 (base), 67 (25), 55 (20), 51 (39); CIMS (2-methylpropane) m/e(relative intensity) 264 (M + H⁺, base); EIHRMS m/e 263.0980 (C₁₄H₁₇NO₂S requires 263.0980). Anal. Calcd for C₁₄H₁₇NO₂S: C, 63.85; H, 6.51; N, 5.32, S, 12.18. Found: C, 63.46; H, 6.22; N, 5.16; S, 12.29.

2-[(PhenyIsulfonyI)imino]-3-butene (1e): ¹H NMR (C_6D_6 , 300 MHz, ppm) 8.04 (2 H, d, J = 7 Hz), 7.05 (3 H, m), 6.03 (1 H, dd, J = 18, 10 Hz, CH=C), 5.53 (1 H, d, J = 18 Hz, CH₁H_c=C), 5.23 (1 H, d, J = 10 Hz, CH₁H_c=C), 1.73 (3 H, s, CH₃); ¹³C NMR (C_6D_6 , 75 MHz, ppm) 179.1, 142.3, 138.6, 132.6, 128.9, 128.3, 128.0, 127.7, 127.3, 19.0; IR (neat) ν_{max} 3064, 2926, 1622, 1576, 1448, 1308, 1154, 1090, 1022, 846, 730, 688 cm⁻¹; EIMS *m/e* (relative intensity) 209 (14, M⁺), 141 (52), 125 (11), 77 (base), 51 (22); CIMS (2-methylpropane) *m/e* (relative intensity) 210 (M + H⁺, base); CIHRMS *m/e* 210.0588 ($C_{10}H_{11}NO_2S$ require s 210.0588).

(*E*)-4-Phenyl-2-[(phenylsulfonyl)imino]-3-butene (1f): ¹H NMR (C_6D_6 , 300 MHz, ppm) 8.20 (2 H, d, J = 7.4 Hz), 6.96 (8 H, m), 6.89 (1 H, d, J = 16 Hz, C=CH), 6.45 (1 H, d, J = 16 Hz, C=CH), 2.73 (3 H, s, CH₃); ¹³C NMR (C_6D_6 , 75 MHz, ppm) 179.0 (e), 145.8 (o), 143.7 (o), 142.9 (e), 135.0 (e), 132.6 (o), 130.8 (o), 129.6 (o), 129.3 (o), 129.2 (o), 129.0 (o), 128.6 (o), 127.6 (o), 123.3 (o), 20.3 (o); 118 (neat) ν_{max} 3062, 1624, 1560, 1448, 1372, 1306, 1210, 1152, 1090, 1026, 970, 884, 740, 688, 656, 636 cm⁻¹; CIMS (2-methylpropane) *m/e* (relative intensity) 286 (M + H⁺, 41), 158 (base); EIHRMS *m/e* 285.0820 ($C_{16}H_{15}NO_2S$ requires 285.0822).

(E)-1,3-Diphenyl-1-[(phenylsulfonyl)imino]-2-propene (1g): ¹H NMR (C₆D₆, 300 MHz, ppm) 8.05 (2 H, d, J = 7 Hz), 7.61 (6 H, m), 7.50 (1 H, d, J = 16 Hz, C=CH), 7.43 (4 H, m), 7.26 (3 H, m), 7.06 (1 H, d, J = 16 Hz, CH=C); ¹³C NMR (C₆D₆, 75 MHz, ppm) 177.3, 148.5, 142.8, 134.7, 132.4, 131.7, 130.9, 130.4, 130.2, 130.1, 129.2, 129.0, 128.8, 128.7, 128.6, 128.4, 128.3, 128.1, 123.1, 102.3; IR (neat) ν_{max} 3050, 1616, 1578, 1540, 1448, 1320, 1152, 1086, 860, 810, 754, 688, 654 cm⁻¹; CIMS (2-methylpropane) m/e 348 (M + H⁺, base); CIHRMS m/e 348.1058 (C₂₁H₁₇NO₂S requires 348.1058).

(*E*)-3-Phenyl-1-[(phenylsulfonyl)lmino]-2-propene (1h): mp 107–109 °C (EtOAc/hexane); ¹H NMR (C_6D_6 , 300 MHz, ppm) 8.80 (1 H, d, *J* = 9 Hz, CH=N), 7.95 (2 H, d, *J* = 7.7 Hz), 7.40–7.70 (9 H, m), 7.00 (1 H, dd, *J* = 16, 9 Hz, CH=C); ¹³C NMR (C_6D_6 , 75 MHz, ppm) 171.1, 153.1, 133.1, 131.3, 129.1, 128.8, 128.4, 128.3, 128.0, 127.7, 124.8; 1R (neat) ν_{max} 3062, 1618, 1580, 1448, 1318, 1260, 1156, 1088, 1012, 966, 858, 784, 752, 724, 686, 632 cm⁻¹; E1MS *m/e* (relative intensity) 270 (4), 206 (16), 141 (68), 130 (39), 129 (base), 125 (43), 102 (29), 77 (53), 64 (11), 51 (30), 50 (23), 48 (23), 39 (28), 38 (15); C1MS (2-methylpropane) *m/e* (relative intensity) 272 (M + H⁺, 1), 259 (11),

⁽³⁶⁾ Proton nuclear magnetic resonance spectra (¹H NMR) and carbon nuclear magnetic resonance spectra (¹³C NMR) were recorded on a Gemini 200, QE-300, or VSR-500S spectrometer, and chemical shifts are reported in parts per million (ppm) relative to internal tetramethylsilane (0.00 ppm). For APT ¹³C NMR, e = even and o = odd number of attached protons. Infrared spectra (IR) were recorded on a Perkin Elmer 1420 or Perkin Elmer Model 1800 FTIR as KBr pellets (solids) and thin films (liquids and oils). Melting points (mp) were determined on a Thomas Hoover capillary melting point apparatus and are uncorrected. Electron impact mass spectra (EIMS) and chemical ionization mass spectra (CIMS) were recorded on a Finnegan 4000 mass spectrometer. Electron impact (EI) and chemical ionization (CI) high-resolution mass spectra (HRMS) were recorded on a Kratos MS-50 Inglifesolution mass spectra (TRNAS) were performed in a Lieo hy-draulically pressurized apparatus³⁷ containing a castor oil media using Teflon vessels sealed at both ends with brass screw clamps. Flash chromatography was performed on 230-400 mesh silica gel (SiO₂) and 100-200 mesh Florisil. Tetrahydrofuran (THF), ether (Et₂O), and benzene (C₆H₆) were distilled from sodium benzophenone ketyl. Dichloromethane (CH₂Cl₂) was distilled from phosphorus pentoxide. Carbon tetrachloride (CCl₄), triethylamine (Et₃N), and N,N-dimethylformamide (DMF) were distilled from calcium hydride. Methanol (CH₃OH) was distilled from magnesium turnings. All extraction and chromatographic solvents: ethyl ether (Et₂O), dichloromethane (CH2Cl2), ethyl acetate (EtOAc), and hexane were distilled prior to use. All reactions requiring anhydrous conditions and/or an inert atmosphere were performed under a positive pressure of argon or nitrogen. Ethyl vinyl ether, 1,1-dimethoxyethylene, 2-methoxypropene, (E)-4-propenylanisole, styrene, and 4-vinylanisole were obtained from Aldrich Chemical Co., Inc. 1,1-Dimeth-oxyethylene was obtained from Wiley Organics. Ethyl-1-propenyl ether was obtained as a 2.8:1 (Z/E) mixture from Fluka Chemical Corp. and separated by gas chromatography. Benzyl vinyl ether,^{36a} (Z)-benzyl 1-propenyl ether,^{36b} (E)-1-ethoxy-2-phenylethylene,^{36c} (Z)-1-ethoxy-2-phenylethylene,^{36f} and (Z)-1-acetoxy-2-(benzyloxy)ethylene^{36f} were prepared according to the following procedures: (a) Watanabe, W. H.; Conlon, L. E. J. Am. Chem. Soc. 1957, 79, 2828. (b) Rautenstrauch, V.; Büchi, G.; Wüest, H. J. Am. Chem. Soc. 1974, 96, 2576. (c) Negishi, E.; Takahashi, T.; Baba, S.; Van Horn, D. E.; Okukado, N. J. Am. Chem. Soc. 1987, 109, 2393. (d) Baldwin, J. E.; Walker, L. E. J. Org. Chem. 1966, 31, 3985. (e) Hoff, S.; Brandsma, L.; Arens, J. F. Rec. Trav. Chim. Pays-Bas 1968, 87, 916. (f) Boger, D. L.; Robarge, K. D. J. Org. Chem. 1988, 53, 5976. reactions requiring anhydrous conditions and/or an inert atmosphere were D. J. Org. Chem. 1988, 53, 5976.

Inverse Electron Demand Diels-Alder Reactions

186 (10), 143 (8), 130 (base); CIHRMS m/e 272.0745 (C₁₅H₁₃NO₂S requires 272.0745). Anal. Calcd for C₁₅H₁₃NO₂S: C, 66.40; H, 4.83; N, 5.16; S, 11.82. Found: C, 66.03; H, 4.94; N, 5.12; S, 11.83.

2-Methyl-1-[(phenylsulfonyl)imino]-2-propene (1i), ¹H NMR (C_6D_6 , 300 MHz, ppm) 8.60 (1 H, s, CH=N), 7.98 (2 H, dd, J = 8, 1 Hz), 6.88–7.16 (3 H, m), 5.22 (1 H, s, CHH=C), 5.06 (1 H, s, CHH=C), 1.52 (3 H, s, CH₃); ¹³C NMR (C_6D_6 , 75 MHz, ppm) 171.9, 135.3, 132.8, 128.8, 127.5, 15.5; IR (neat) ν_{max} 3066, 2924, 1624, 1578, 1448, 1328, 1308, 1160, 1090, 1026, 810, 754, 726, 688; EIMS m/e (relative intensity) 209 (2, M⁺), 157 (12), 141 (21), 93 (11), 77 (base), 51 (21); CIMS (2-methylpropane) m/e (relative intensity) 210 (M + H⁺, base); EIHRMS m/e 209.0510 ($C_{10}H_{11}NO_2S$ requires 209.0510).

2-Oxo-3-[1-phenyl-1-[(phenylsulfonyl)imino]methyl]-2H-1-benzopyran (1j): mp 189–193 °C (EtOAc/hexane); ¹H NMR (CDCl₃, 300 MHz, ppm) 8.10 (2 H, d, J = 7 Hz), 7.90 (3 H, m), 7.65–7.50 (6 H, m), 7.43–7.33 (4 H, m); ¹³C NMR (CDCl₃, 75 MHz, ppm) 157.6 (e), 154.2 (o), 142.6 (o), 135.0 (o), 124.4 (o), 133.2 (o), 133.0 (o), 129.8 (o), 127.6 (o), 125.0 (o), 124.6 (o), 117.9 (e), 117.0 (o); IR (neat) ν_{max} 3062, 1726, 1608, 1588, 1560, 1490, 1448, 1366, 1320, 1266, 1244, 1158, 1122, 1088, 1020, 926, 834 cm⁻¹; EIMS *m/e* (relative intensity) 389 (17, M⁺), 248 (base), 89 (30), 77 (93), 63 (8), 51 (21); CIMS (2-methylpropane) *m/e* (relative intensity) 390 (M + H⁺, base); EIHRMS *m/e* 389.0721 ($C_{22}H_{15}NO_4S$ requires 389.0721). Anal. Calcd for $C_{22}H_{15}NO_4S$; C, 67.85; H, 3.88; N, 3.60; S, 8.23. Found: C, 67.90; H, 3.77; N, 3.66; S, 8.12.

 $(3 S^*, 4a R^*)$ -3-Ethoxy-1-methyl-2-(diphenylphosphinyl)-2,3,4,4a,5,6,7,8-octahydroisoquinoline (2c): ¹H NMR (C₆D₆, 300 MHz, ppm) 8.10 (2 H, m), 7.95 (2 H, m), 7.05 (6 H, m), 4.66 (1 H, dd, J =8, 2 Hz, C3-H), 4.11 (1 H, dq, J = 10, 7 Hz, OCHHCH₃), 3.43 (1 H, dq, J = 10, 7 Hz, OCHHCH₃), 2.44 (1 H, m, C4-H_{ax}), 2.01 (3 H, s, CH₃), 1.80-1.45 (6 H, m), 1.40-1.20 (4 H, m), 1.11 (3 H, t, J = 7 Hz, OCH₂CH₃); ¹³C NMR (C₆D₆, 75 MHz, ppm) 136.8 (e), 135.1 (e), 133.4 (o), 133.3 (o), 133.1 (o), 132.4 (o), 132.3 (o), 129.6 (o), 129.5 (o), 129.2 (e), 129.1 (o), 128.9 (o), 128.8 (e), 123.0 (e), 84.2 (o), 63.8 (e), 37.6 (e), 35.1 (o), 31.1 (e), 29.0 (e), 28.7 (e), 19.7 (o), 16.2 (o); IR (neat) ν_{max} 3058, 2930, 2858, 2362, 1728, 1438, 1386, 1288, 1210, 1168, 1120, 1058, 996, 750, 724, 698, 678 cm⁻¹; EIMS m/e (relative intensity) 349 (26), 201 (14), 148 (54), 84 (base), 77 (50), 55 (31), 49 (52); CIMS (2methylpropane) m/e (relative intensity) 396 (M + H⁺, 1), 350 (base); EIHRMS m/e 395.2006 (C₂₄H₃₀NO₂P requires 395.2014).

(3S*,4aR*)-3-Ethoxy-1-methyl-2-(phenylsulfonyl)-2,3,4,4a,5,6,7,8octahydroisoquinoline (2d): mp 62-64 °C (EtOAc/hexane); ¹H NMR $(C_6D_6, 300 \text{ MHz}, \text{ppm})$ 7.70 (2 H, d, J = 7 Hz), 7.50 (3 H, m), 5.20 $(1 \text{ H}, t, J = 3 \text{ Hz}, \text{C}3\text{-H}), 3.65 (1 \text{ H}, \text{dq}, J = 10, 7 \text{ Hz}, \text{OCH}HCH_3),$ 3.45 (1 H, dq, J = 10, 7 Hz, OCHHCH₃), 2.63 (1 H, dd, J = 12, 2 Hz, C4-H_{ax}), 2.14 (3 H, s, C=CCH₃), 1.70 (2 H, m), 1.60 (2 H, m), 1.40 $(2 \text{ H}, \text{m}), 1.20 (2 \text{ H}, \text{m}), 1.14 (3 \text{ H}, \text{t}, J = 7 \text{ Hz}, \text{OCH}_2\text{CH}_3); {}^{13}\text{C} \text{ NMR}$ (C₆D₆, 75 MHz, ppm) 140.4 (e), 132.2 (o), 130.4 (e), 129.1 (o), 128.6 (o), 121.0 (e), 84.2 (o), 63.2 (e), 36.7 (e), 33.8 (o), 32.7 (e), 30.7 (e), 27.5 (e), 27.2 (e), 19.3 (o), 15.2 (o); IR (neat) ν_{max} 2930, 2856, 1446, 1346, 1256, 1236, 1198, 1172, 1154, 1110, 1080, 1054, 986, 964, 924, 860 cm⁻¹; E1MS m/e (relative intensity) 335 (4, M⁺), 194 (8), 148 (base), 172 (2), 107 (14), 81 (22), 79 (22), 77 (66), 51 (8); CIMS (2-methylpropane) m/e (relative intensity) 336 (M + H⁺, 2), 290 (base); EIHRMS m/e 335.1555 (C₁₈H₂₅NO₃S requires 335.1555). Anal. Calcd for C₁₈H₂₅NO₃S: C, 64.44; H, 7.53; N, 4.18. Found: C, 64.46; H, 7.82; N, 4.33.

 $(3S^*, 4aR^*) - 3 - (Benzyloxy) - 1 - methyl - 2 - (phenylsulfonyl) - 2,3,4,4a,5,6,7,8 - octahydroisoquinoline (2e): ¹H NMR (C₆D₆, 300 MHz, ppm) 7.62 (2 H, d, <math>J = 7$ Hz), 7.26 (2 H, d, J = 7 Hz), 7.06 - 7.18 (3 H, m), 6.89 - 6.99 (3 H, m), 5.37 (1 H, m, C4-H), 4.73 (1 H, d, J = 12 Hz, OCHHPh), 4.50 (1 H, d, J = 12 Hz, OCHHPh), 2.48 (1 H, m), 2.20 (3 H, s, CH₃), 1.80 (1 H, m), 1.50 (2 H, m), 1.23 (6 H, m), 1.25 (1 H, m); ¹³C NMR (C₆D₆, 75 MHz, ppm) 140.3 (e), 139.1 (e), 132.1 (o), 130.4 (e), 128.8 (o), 127.7 (o), 127.5 (o), 121.3 (o), 84.2 (o), 69.7 (e), 36.8 (e), 33.7 (o), 32.6 (e), 30.8 (e), 27.5 (e), 19.6 (o); IR (neat) ν_{max} 2930, 2854, 1654, 1446, 1348, 1258, 1198, 1172, 1076, 1050, 966, 720, 690 cm ¹; EIMS m/e (relative intensity) 397 (1, M⁺), 148 (28), 91 (base), 77 (33), 65 (9), 51 (9); CIMS (2-methylpropane) m/e (relative intensity) 398 (M + H⁺, 2), 290 (base); CIHRMS m/e 398.1789 (C₂₃H₂₇NO₃S requires 398.1789). Anal. Calcd for C₂₃H₂₇NO₃S: C, 69.48; H, 6.86; N, 3.52. Found: C, 69.44; H, 6.98; N, 3.44.

 $(3S^*, 4S^*, 4aR^*)$ -3- (Benzyloxy)-1,4-dimethyl-2- (phenylsulfonyl)-2,3,4,4a,5,6,7,8-octahydroisoquinoline (2f): mp 104–107 °C (EtOAc/hexane); ¹H NMR (C₆D₆, 300 MHz, ppm) 7.85 (2 H, d, J = 7 Hz), 7.30 (2 H, d, J = 7 Hz), 7.00–7.20 (3 H, m), 6.88–6.96 (3 H, m), 5.45 (1H, d, J = 3 Hz, C3-H), 4.67 (1 H, d, J = 12 Hz, OCH/Ph), 4.55 (1 H, d, J = 12 Hz, OCH/HPh), 2.30 (1 H, ddd, J = 14, 4.5, 4.0 Hz, C4–H_{ax}), 2.04 (3 H, s, CH₃), 1.80 (1 H, ddq, J = 7, 4.5, 3 Hz), 1.0–1.7 (8 H, m), 0.95 (3 H, d, J = 7 Hz, C4–CH₃): ¹³C NMR (C₆D₆, 75 MHz, ppm)

142.9 (e), 138.9 (e), 132.0 (o), 128.7 (o), 128.3 (o), 128.0 (o), 127.8 (o), 127.7 (o), 127.6 (e), 122.4 (e), 90.5 (o), 70.3 (e), 41.6 (o), 40.6 (o), 32.8 (e), 28.8 (e), 26.1 (e), 25.7 (e), 18.7 (o), 17.6 (o); IR (neat) ν_{max} 2930, 2854, 1728, 1498, 1448, 1348, 1260, 1172, 1026, 802, 750, 718, 692 cm⁻¹; EIMS *m/e* (relative intensity) 411 (1, M⁺), 288 (6), 162 (28), 120 (5), 108 (2), 107 (11), 91 (base), 79 (14), 77 (21); CIMS (2-methylpropane) *m/e* (relative intensity) 304 (base, M + H⁺ - PhCH₂OH); CIHRMS *m/e* 412.1938 (C₂₄H₂₉NO₃S requires 412.1946).

(35*,4a R*)-3:Methoxy-1-methyl-4-methylene-2-(phenylsulfonyl)-2,3,4,4a,5,6,7,8-octahydroisoquinoline (2g): mp 96–99 °C (EtOAc/ hexane); ¹H NMR (C₆D₆, 300 MHz, ppm) 7.62 (2 H, d, J = 7 Hz), 6.80–7.00 (3 H, m), 5.42 (1 H, s, C3-H), 4.55 (1 H, s, CHH=C), 4.35 (1 H, s, CHH=C), 3.30 (3 H, s, OCH₃), 2.43 (1 H, dd, J = 12, 1.3 Hz, C4-H_{ax}), 2.25 (3 H, s, CH₃), 1.90–1.60 (2 H, m), 1.50–1.30 (2 H, m), 1.20–1.00 (2 H, m); ¹³C NMR (C₆D₆, 75 MHz, ppm) 144.4 (e), 139.6 (e), 132.5 (o), 128.7 (o), 128.3 (o), 122.0 (e), 113.5 (e), 91.1 (o), 55.5 (o), 42.3 (o), 38.0 (e), 30.3 (e), 27.1 (e), 27.0 (e), 19.6 (e); IR (neat) ν_{max} 2932, 2856, 1446, 1348, 1198, 1170, 1144, 1094, 1070, 1042, 984, 950, 914, 750, 724, 690, 662 cm⁻¹; EIMS m/e (relative intensity) 333 (8, M⁺), 318 (5), 302 (6), 160 (47), 151 (38), 141 (11), 119 (17), 105 (11), 93 (14), 91 (46), 77 (base), 57 (52), 51 (39); CIMS (2-methylpropane) m/e(relative intensity) 334 (M + H⁺, 7) 302 (base); EIHRMS m/e_3 3.1400 (C₁₈H₂₃NO₃S requires 333.1398). Anal. Calcd for C₁₈H₂₃NO₃S: C, 64.83; H, 6.97; N, 4.20. Found: C, 65.20; H, 6.97; N, 4.26.

 $(3S^*, 3R^*, 4aR^*)$ -3-Methoxy-1,3-dimethyl-2-(phenylsulfonyl)-2,3,4,4a,5,6,7,8-octahydrolsoquinoline (2h): mp 104–106 °C (EtOAc/hexane); ¹H NMR (C₆D₆, 300 MHz, ppm) 7.90 (2 H, m), 6.93 (3 H, m), 3.09 (3 H, s, C3-OCH₃), 2.50 (1 H, dd, J = 13, 1 Hz, C4-H_{ax}), 2.33 (3 H, s, C1-CH₃), 1.50 (6 H, m), 1.29 (3 H, s, C3-CH₃), 1.20 (2 H, m); ¹³C NMR (C₆D₆, 75 MHz, ppm) 142.4 (e), 132.4 (e), 131.9 (o), 131.9 (e), 128.5 (o), 127.6 (o), 127.2 (o), 50.2 (o), 39.5 (e), 35.7 (o), 35.3 (e), 30.4 (e), 27.1 (e), 26.7 (e), 22.8 (o), 21.6 (o); IR (neat) ν_{max} 2928, 1448, 1348, 1158, 988, 690 cm⁻¹; EIMS m/e (relative intensity) 335 (1, M⁺), 194 (41) 162 (27), 136 (18), 77 (36), 73 (base), 72 (63); CIMS (2-methylpropane) m/e (relative intensity) 336 (M + H⁺, 2), 304 (base); EIHRMS m/e 335.1557 (C₁₈H₂₅NO₃S requires 335.1554). Anal. Calcd for C₁₈H₂₅NO₃S: C, 64.44; H, 7.53; N, 4.18. Found: C, 64.38; H, 7.61; N, 4.17.

(4a*R**)-3,3-Dimethoxy-1-methyl-2-(phenylsulfonyl)-2,3,4,4a,5,6,7,8-octahydroisoquinoline (2i): ¹H NMR (C_6D_6 , 300 MHz, ppm) 7.95 (2 H, m), 7.03 (3 H, m), 2.84 (3 H, s, OCH₃), 2.83 (3 H, s, OCH₃), 2.52 (1 H, d, *J* = 12 Hz, C4-H_{ax}), 2.30 (3 H, s, CH=CCH₃), 2.03 (2 H, m), 1.60 (4 H, m), 1.20 (2 H, m); ¹³C NMR (C_6D_6 , 75 MHz, ppm) 132.3 (e), 131.4 (o), 128.3, 128.1, 127.9, 123.3, 48.5 (o), 48.1 (o), 36.5 (o), 35.3 (e), 34.5 (e), 30.3 (e), 27.3 (e), 26.6 (e), 26.5 (e), 20.2 (o); IR (neat) ν_{max} 2928, 2854, 1448, 1324, 1152, 1118, 1050, 690, 660 cm⁻¹; EIMS *m*/e (relative intensity) 351 (2, M⁺), 210 (18), 196 (11), 179 (16), 178 (base), 136 (22), 91 (10), 88 (80), 77 (57), 56 (19), 51 (23); CIMS (2-methylpropane) *m*/e (relative intensity) 352 (M + H⁺, 1), 178 (base); CIHRMS *m*/e 352.1582 (C₁₈H₂₅NO₄S requires 352.1528).

(2S*)-2-Ethoxy-6-methyl-1-(phenylsulfonyl)-1,2,3,4-tetrahydropyridine (8): mp 58-61 °C (EtOAc); ¹H NMR (C₆D₆, 300 MHz, ppm) 7.69 (2 H, d, J = 7), 7.01 (3 H, m), 5.50 (1 H, dd, J = 2.8, 1.3 Hz, CHOCH₂CH₃), 4.81 (1 H, dd, J = 4.6, 2.5 Hz, C=CH), 3.85 (1 H, dq, J = 10.5, 7 Hz, OCHHCH₃), 3.60 (1 H, dq, J = 10.5, 7 Hz, $OCHHCH_3$), 2.20 (3 H, s, CH₃), 2.07 (dddd, J = 16, 7, 2.5, 2 Hz, C4-H_{eq}), 1.55 (1 H, dddd, J = 13, 7, 2, 1.3 Hz, C3-H_{eq}), 1.40 (1 H, dddd, J = 16, 7, 2.5, 2 Hz, C4-H_{ax}), 1.10 (3 H, t, J = 7 Hz, OCH₂CH₃), 0.91 (1 H, dddd, J = 13, 3, 7, 2.8 Hz, C3-H_{ax}); ¹³C NMR (C₆D₆, 75 MHz, ppm) 132.3 (o), 129.0 (e), 128.0 (o), 127.7 (o), 127.2 (e), 127.1 (o), 114.0 (o), 84.0 (o), 63.2 (e), 25.6 (e), 23.9 (o), 18.6 (e), 15.2 (o); IR (neat) v_{max} 2974, 2932, 1664, 1480, 1446, 1386, 1348, 1310, 1248, 1190, 1168, 1120, 1100, 1062, 1016, 968, 928, 848, 802, 758, 732, 690, 604 cm⁻¹; E1MS m/e (relative intensity) 281 (8, M⁺), 236 (12), 140 (26), 94 (base), 77 (59), 51 (21); CIMS (2-methylpropane) m/e (relative intensity) 282 (M + H⁺, 3), 236 (base); EIHRMS m/e 281.1088 (C₁₄H₁₉NO₃S requires 281.1085). Anal. Calcd for C₁₄H₁₉NO₃S: C, 59.76; H, 6.81; N, 4.98; S, 11.40. Found: C, 60.06; H, 6.74; N, 4.87; S, 11.02.

 $(2S^*, 4R^*)$ -2-Ethoxy-6-methyl-4-phenyl-1-(phenylsulfonyl)-1,2,3,4tetrahydropyridine (9): mp 96–98 °C (EtOAc/hexane): ¹H NMR (C₆D₆, 300 MHz, ppm) 7.70 (2 H, d, J = 7 Hz), 7.10 (8 H, m), 5.48 (1 H, dd, J = 4, 2.3 Hz, C2-H), 5.20 (1 H, d, J = 1.3 Hz, C5-H), 3.75 (1 H, dq, J = 10, 7 Hz, OCHHCH₃), 3.43 (1 H, dq, J = 10, 7 Hz, OCHHCH₃), 2.50 (1 H, ddd, J = 8.6, 4.0, 1.3, C4-H_{eq}), 2.24 (3 H, s, CH=CCH₃), 1.85 (1 H, ddd, J = 14.3, 4.0, 2.3 Hz, C3-H_{eq}), 1.69 (1 H, ddd, J = 14.3, 8.6, 4.0 Hz, C3-H_{ex}), 1.00 (3 H, t, J = 7 Hz, OCH₂CH₃); ¹³C NMR (C₆D₆, 75 MHz, ppm) 145.5 (e), 140.9 (e), 132.4 (o), 132.0 (e), 129.0 (o), 128.3 (o), 127.9 (o), 127.6 (e), 127.2 (o), 126.4 (o), 121.0 (o), 84.3 (o), 63.3 (e), 36.4 (o), 36.3 (e), 23.5 (o), 15.0 (o); IR (neat) ν_{max} 2929, 1652, 1443, 1346, 1167, 1109, 1050, 1024, 952, 758, 732 cm⁻¹; EIMS *m/e* (relative intensity) 357 (1, M⁺), 312 (2), 216 (6), 170 (base), 144 (18), 143 (10), 129 (31), 128 (10), 103 (14), 91 (13), 77 (90), 51 (20); CIMS (2-methylpropane) *m/e* (relative intensity) 358 (M + H⁺, 1), 312 (base); EIHRMS *m/e* 357.1401 (C₂₀H₂₃NO₃S requires 357.1398). Anal. Calcd for C₂₀H₂₃NO₃S: c, 67.77; H, 6.23; N, 3.72. Found: C, 67.37; H, 6.22; N, 3.93.

The structure of 9 was unambiguously established in a single-crystal X-ray structure determination.^{21a}

 $(2S *, 4R^*)$ -2-Ethoxy-4,6-diphenyl-1-(phenylsulfonyl)-1,2,3,4-tetrahydropyridine (10): ¹H NMR (C₆D₆, 300 MHz, ppm) 7.70 (2 H, d, J = 7 Hz), 7.60 (2 H, d, J = 7 Hz), 7.20 (5 H, m), 6.90 (6 H, m), 5.85 (1 H, d, J = 3.2 Hz, C==CH), 5.67 (1 H, dd, J = 5.8, 4 Hz, CHOCH₂CH₃), 4.13 (1 H, dq, J = 10, 7 Hz, OCHHCH₃), 3.66 (1 H, dq, J = 10, 7 Hz, OCHHCH₃), 2.40 (1 H, dd, J = 7.6, 7.4 Hz, C4-H_{eq}), 2.06 (1 H, ddd, J = 14, 7.4, 5.8 Hz, C3-H_{eq}), 1.95 (1 H, J = 14, 7.6, 4 Hz, C3-H_{ax}), 1.12 (3 H, t, J = 7 Hz, OCH₂CH₃); ¹³C NMR (C₆D₆, 75 MHz, ppm) 145.5, 138.5, 133.3, 129.7, 129.6, 129.4, 129.2, 129.1, 129.0, 128.9, 128.5, 127.9, 127.5, 121.2, 119.3, 86.0, 64.8, 40.5, 38.5, 15.1; IR (neat) ν_{max} 2974, 1684, 1654, 1596, 1560, 1542, 1492, 1446, 1356, 1170, 1060, 954, 762, 738, 690 cm⁻¹; EIMS *m/e* (relative intensity) 278 (7), 232 (49), 231 (base), 230 (91), 202 (15), 154 (13), 129 (17), 102 (18), 77 (69), 51 (39); CIMS (2-methylpropane) *m/e* 420 (M + H⁺, 6), 232 (base); CIHRMS *m/e* 420.1625 (C₂₃H₂₅NO₃S requires 420.1633).

(2S*,4R*)-2-Ethoxy-4-phenyl-1-(phenylsulfonyl)-1,2,3,4-tetrahydropyridine (11a): ¹H NMR (C_6D_6 , 300 MHz, ppm) 7.73 (2 H, d, J = 7Hz), 7.10 (7 H, m), 6.83 (1 H, d, J = 8.4 Hz, C6-H), 5.24 (1 H, m, C2-H), 5.04 (1 H, J = 8.4, 4.7 Hz, C5-H), 3.56 (1 H, dq, J = 9.4, 7 Hz, $OCHHCH_3$), 3.15 (1 H, dq, J = 9.4, 7 Hz, $OCHHCH_3$), 2.88 (1 H, dd, J = 8, 2.5 Hz, C4-H_{eq}), 1.90 (1 H, dd, J = 14, 2.5 Hz, C3-H_{eq}), 1.30 $(1 \text{ H}, \text{ddd}, J = 14, 8, 3 \text{ Hz}, \text{C3-H}_{ax}), 0.76 (3 \text{ H}, t, J = 7 \text{ Hz}, \text{OCH}_2\text{CH}_3);$ ¹³C NMR (C_6D_6 , 75 MHz, ppm) 144.5 (e), 132.4 (o), 129.1 (o), 129.0 (o), 128.1 (e), 128.0 (o), 127.9 (o), 127.7 (o), 127.5 (o), 127.2 (o), 126.1 (o), 123.9 (o), 114.9 (o), 112.1 (o), 81.9 (o), 63.0 (e), 34.8 (o), 33.8 (e), 14.6 (o); IR (neat) ν_{max} 2976, 1654, 1560, 1542, 1490, 1448, 1398, 1352, 1252, 1170, 1108, 1060, 1024, 920, 758, 730, 690 cm⁻¹; EIMS m/e(relative intensity) 343 (13, M⁺), 297 (32), 156 (44), 130 (23), 129 (22), 115 (13), 103 (19), 91 (23), 77 (base), 72 (25), 69 (17), 51 (42); CIMS (2-methylpropane) m/e 344 (M + H⁺, 1), 298 (base); EIHRMS m/e 343.1167 (C19H21NO3S requires 343.1163)

 $(2R^*, 3S^*, 4R^*)$ -2-(Benzyloxy)-3-methyl-4-phenyl-1-(phenyl-sulfonyl)-1,2,3,4-tetrahydropyridine (11b): ¹H NMR (C₆D₆, 300 MHz, ppm) 7.68 (2 H, d, J = 7·Hz), 7.10 (10 H, m), 6.90 (3 H, m), 6.85 (1 H, d, J = 8.1 Hz, C6-H), 5.25 (1 H, d, J = 2.3 Hz, C2-H), 5.16 (1 H, dd, J = 8.1, 4.5 Hz, C5-H), 4.92 (1 H, d, J = 12.3 Hz, OCHHPh), 4.66 (1 H, dd, J = 12.3 Hz, OCHHPh), 2.66 (1 H, dd, J = 7.7, 4.5 Hz, C4-H_{eq}), 1.38 (1 H, ddq, J = 7.7, 7. 2.3 Hz, C3-H_{ax}), 0.64 (3 H, d, J = 7 Hz, CHCH₃); ¹³C NMR (C₆D₆, 75 MHz, ppm) 132.6, 131.6, 129.3, 128.4, 128.3, 128.1, 127.6, 127.2, 126.8, 123.0, 115.2, 86.2, 70.4, 41.8, 316.8, 15.7; IR (neat) ν_{max} 2930, 1654, 1560, 1492, 1448, 1370, 1348, 1172, 1136, 1092, 1064, 1012, 904, 732, 700, 672 cm⁻¹; EIMS *m/e* (relative intensity) 419 (1, M⁺), 296 (25), 91 (base); CIMS (2-methylpropane) *m/e* (relative intensity) 420 (M + H⁺, 1), 312 (base); EIHRMS *m/e* 419.1548 (C₂₅H₂₅NO₃S requires 419.1555).

(2*S**)-2-Ethoxy-5-methyl-1-(phenylsulfonyl)-1,2,3,4-tetrahydropyridine (12): mp 56-58 °C (EtOAc/hexane); ¹H NMR (C₆D₆, 300 MHz, ppm) 7.70 (2 H, d, J = 7 Hz), 6.88 (3 H, m), 6.57 (1 H, s, C=CH), 5.24 (1 H, dd, J = 2.8, 1.1 Hz, CHOCH₂CH₃), 4.00 (1 H, dq, J = 10, 7 Hz, OCHHCH₃), 3.70 (1 H, dq, J = 10, 7 Hz, OCHHCH₃), 2.10 (1 H, ddd, J = 15.6, 61, 62, 64, 1.1 Hz, C3-H_{eq}), 1.60 (1 H, dddd, J = 13, 6, 2, 1.1 Hz, C3-H_{eq}), 1.34 (3 H, s, CH=CCH₃), 1.20 (1 H, dddd, J = 15.6, 6, 2 Hz, C4-H_{ax}), 1.10 (3 H, t, J = 7 Hz, OCH₂CH₃), 0.70 (1 H, dddd, J = 15.6, 6, 2 Hz, C4-H_{ax}), 1.10 (3 H, t, J = 7 Hz, OCH₂CH₃), 0.70 (1 H, dddd, J = 13, 13, 6, 2.8 Hz, C3-H_{ax}); ¹³C NMR (C₆D₆, 75 MHz, ppm) 140.2 (e), 132.3 (o), 129.0 (o), 128.3 (o), 127.7 (o), 127.1 (o), 119.4 (e), 117.1 (o), 81.1 (o), 63.2 (e), 25.9 (e), 22.3 (e), 20.8 (o), 15.9 (o); IR (neat) ν_{max} 2928, 1684, 1654, 1560, 1352, 1164, 1102, 1070, 938, 838, 722, 690, 634 cm⁻¹; EIMS *m/e* (relative intensity) 281 (8, M⁺), 236 (12), 140 (26), 94 (base), 82 (21), 77 (59); CIMS (2-methylpropane) *m/e* 282 (M + H⁺, 3); EIHRMS *m/e* 281.1085 (C₁₄H₁₉NO₃S requires 281.1085). Anal. Calcd for C₁₄H₁₉NO₃S: C, 59.76; H, 6.81; N, 4.98; S, 11.40. Found: C, 59.54; H, 6.63; N, 4.87; S, 11.11.

 $(6S^*)$ -2-Oxo-2*H*-1-benzopyran[3,4-*c*]-6-ethoxy-2-phenyl-1-(phenyl-sulfonyl)-1,4,5,6-tetrahydropyridine (13): mp 132–135 °C (EtOAc/hexane); ¹H NMR (CDCl₃, 300 MHz, ppm) 7.40 (2 H, m), 7.25 (2 H, m), 7.03 (4 H, m), 5.86 (6 H, m), 5.88 (1 H, dd, J = 5.2, 4.2 Hz, CHOCH₂CH₃), 3.38 (1 H, dq, J = 9, 7 Hz, OCHHCH₃), 3.25 (1 H, dd, J = 8, 6 Hz, C4-H), 3.15 (1 H, dq, J = 9, 7 Hz, OCHHCH₃), 3.25 (1 H, dd, J = 8, 6 Hz, C4-H), 3.15 (1 H, dq, J = 9, 7 Hz, OCHHCH₃), 2.30 (1 H, dd, J = 14, 6, 5.2 Hz, C5-H), 2.11 (1 H, ddd, J = 14, 8, 4.2 Hz, C5-H), 0.84 (3 H, t, J = 7 Hz, OCH₂CH₃); ¹³C NMR (C₆D₆, 75 MHz, ppm) 159.1, 150.7, 149.3, 141.1, 135.0, 132.4, 131.8, 129.0, 128.5, 128.3,

128.1, 128.0, 127.8, 127.7, 127.5, 127.1, 126.6, 123.6, 123.4, 116.9, 84.1, 64.1, 38.1, 32.6, 14.7; IR (neat) ν_{max} 3061, 2977, 1726, 1606, 1478, 1447, 1365, 1321, 1267, 1245, 1159, 1139, 1088, 789, 756, 725, 689, 651, 600 cm⁻¹; CIMS (2-methylpropane) m/e (relative intensity) 462 (M + H⁺, 13), 274 (base); CIHRMS m/e 462.1371 (C₂₆H₂₃NO₅S requires 462.1375).

2-Oxo-2H-1-benzopyran[3,4-c]-6,6-dimethoxy-2-phenyl-1-(phenyl-sulfonyl)-1,4,5,6-tetrahydropyridine (14): ¹H NMR (CDCl₃, 300 MHz, ppm) 7.69 (2 H, d, J = 7 Hz), 7.50 (2 H, m), 7.16 (3 H, m), 6.90 (6 H, m), 6.69 (1 H, m), 3.75 (1 H, dd, J = 11, 8 Hz, C4-H), 2.93 (3 H, s, OCH₃), 2.89 (3 H, s, OCH₃), 2.62 (1 H, dd, J = 12, 11 Hz, C5-H), 2.31 (1 H, dd, J = 12, 8 Hz, C5-H); IR (neat) ν_{max} 2926, 1750, 1618, 1490, 1456, 1360, 1210, 1172, 1116, 1062, 1040, 974, 888, 756, 688 cm⁻¹; EIMS m/e (relative intensity) 404 (2), 390 (5), 248 (50), 89 (29), 77 (base); CIMS (2-methylpropane) m/e (relative intensity) 478 (M + H⁺, 2), 250 (base); CIHRMS m/e 478.1314 (C₂₆H₂₃NO₆S requires 478.1324).

[2-(Ethoxycarbonyl)-2-[(2-tetrahydropyranyloxy)imino]ethyl]triphenylphosphonium Bromide (15). Hydroxylamine hydrochloride (3.48 g, 50.0 mmol) was added to a stirred solution of ethyl bromopyruvate (9.76 g, 50.0 mmol) in anhydrous chloroform (150 mL) and anhydrous methanol (100 mL) at 23 °C. The reaction mixture was stirred at 23 °C for 18 h and concentrated under reduced pressure. The residue was dissolved in dichloromethane (300 mL), washed with 5% aqueous hydrochloric acid and saturated aqueous sodium chloride, dried (Na₂SO₄), filtered, and concentrated in vacuo. Recrystallization afforded ethyl 2-(hydroxyimino)-3-bromopropanoate (9.66 g, 10.5 g theoretical, 92%) as a white solid: mp 75-77 °C (CH₂Cl₂/hexane); ¹H NMR (CDCl₃, 200 MHz, ppm) 4.38 (2 H, q, J = 7.2 Hz, OCH₂CH₃), 4.27 (2 H, s, CH₂Br), 1.39 (3 H, t, J = 7.2 Hz, OCH₂CH₃); ¹³C NMR (CDCl₃, 50 MHz, ppm) 161.9 (C=O), 147.9 (C=N), 62.5 (OCH₂), 14.9 (CH₂Br), 13.8 (CH₃); IR (neat) ν_{max} 3182, 2996, 1736, 1604, 1406, 1318, 1236, 1200, 1122, 1032, 860 cm⁻¹; EIMS m/e (relative intensity) 209/211 (3/3, M⁺), 181/183 (18/18), 129 (21), 101 (base); CIMS (2-methylpropane) m/e (relative intensity) 210/212 (M + H⁺, base); EIHRMS m/e 208.9688 (C₅H₈BrNO₃ requires 208.9688).

A stirred solution of the oxime (9.12 g, 43.4 mmol) in anhydrous dichloromethane (225 mL) was treated with 3,4-dihydro-2H-pyran (5.11 g, 60.7 mmol, 1.4 equiv). A catalytic amount of pyridinium p-toluenesulfonate (820 mg, 3.25 mmol, 0.075 equiv) was added, and the mixture was stirred under nitrogen at 23 °C for 21 h. The reaction mixture was diluted with diethyl ether (100 mL) and washed with half-saturated aqueous sodium chloride (50 mL). The organic layer was dried (Na2-SO₄). filtered, and concentrated in vacuo. Flash chromatography (SiO₂, 5 cm × 25 cm, 12% ethyl acetate/hexane eluant) afforded ethyl 2-{(2tetrahydropyranyloxy)imino]-3-bromopropanoate (12.0 g, 12.8 g theoretical, 94%) as a pale yellow oil: ¹H NMR (CDCl₃, 200 MHz, ppm) 5.57 (1 H, apparent t, J = 2.1 Hz, OCHO), 4.40 (2 H, q, J = 7.1 Hz, OCH₂CH₃), 4.27 (2 H, s, CH₂Br), 3.91 (1 H, m, OCHHCH₂), 3.72 (1 H, m, OCHHCH₂), 1.88 (2 H, m, CHCH₂CH₂), 1.66 (4 H, m, CH_2CH_2), 1.34 (3 H, t, J = 7.1 Hz, OCH_2CH_3); ¹³C NMR (CDCl₃, 50 MHz, ppm) 161.9 (C=O), 148.6 (C=N), 102.1 (OCHO), 62.2 (CO₂-CH₂CH₃), 62.0 (OCH₂CH₂), 28.0 (CH₂Br), 24.6 (O₂CHCH₂), 18.3 (OCH_2CH_2) , 15.9 $(CH_2CH_2CH_2)$, 13.7 $(CO_2CH_2CH_3)$; IR (neat) ν_{max} 2948, 1722, 1374, 1334, 1206, 1188, 1118, 1040, 1020, 986, 964, 900, 866 cm⁻¹; C1MS (2-methylpropane) m/e (relative intensity) 294/296 (M + H⁺, 21/20), 250 (9), 216 (14), 85 (base); CIHRMS m/e 294.0338 $(C_{10}H_{16}BrNO_4 \text{ requires } 294.0341).$

Triphenylphosphine (5.62 g, 21.4 mmol) was added to a solution of the oxime THP ether (6.29 g, 21.4 mmol) in anhydrous tetrahydrofuran (60 mL) and anhydrous benzene (30 mL), and the reaction mixture was warmed at 80 °C under nitrogen for 18 h. The reaction mixture was allowed to cool to 23 °C and further cooled to 0 °C with an ice-water bath. The precipitate was collected by filtration and washed with diethyl ether (2 \times 70 mL). The remaining solid was dried in vacuo to afford 15 (10.9 g, 11.9 g theoretical, 91%) as a white solid: mp 164-165 °C; ¹H NMR (CDCl₃, 200 MHz, ppm) 7.64–7.96 (15 H, m, ArH), 5.46 (1 H, apparent t, J = 15.2 Hz, CHHP), 5.30 (1 H, apparent t, J = 2.2 Hz, OCHO), 5.24 (1 H, apparent t, J = 15.0 Hz, CHHP), 4.07 (2 H, q, J 7.2 Hz, OCH₂CH₃), 3.72 (1 H, m, OCHHCH₂), 3.54 (1 H, m, OCHHCH₂), 1.64 (2 H, m, CHCH₂CH₂), 1.49 (4 H, m, CH₂CH₂), 1.11 $(3 \text{ H}, t, J = 7.2 \text{ Hz}, \text{OCH}_2\text{CH}_3)$; $||\mathbf{R}| (\text{neat}) \nu_{\text{max}} 2956, 1706, 1586, 1436, 1376, 1332, 1250, 1208, 1110, 1052, 1038, 982, 956, 894, 850 cm^{-1}$. Anal. Calcd for C₂₈H₃₁BrNO₄P: C, 60.43; H, 5.63; Br, 14.36; N, 2.52; P, 5.57. Found: C, 60.14; H, 5.86; Br, 14.01; N, 2.42; P, 5.32

General Procedure for the Wittig Reaction of 15 with Aldehydes: Ethyl (E)-4-Phenyl-2-[(2-tetrahydropyranyloxy)imino]-3-butenoate (17a). A stirred suspension of 15 (4.40 g, 7.91 mmol, 1.0 equiv) in anhydrous N,N-dimethylformamide (16 mL) was treated with anhydrous potassium carbonate (1.20 g, 8.68 mmol, 1.1 equiv). The slurry was stirred under

nitrogen for 5 min at 23 °C and was treated with benzaldehyde (840 mg, 7.91 mmol, 1.0 equiv). The reaction mixture was stirred at 23 °C for 27 h. The mixture was diluted with water (50 mL) and extracted with ether (5 \times 50 mL), and the combined extracts were washed with water $(2 \times 100 \text{ mL})$ and saturated aqueous sodium chloride $(1 \times 100 \text{ mL})$, dried (Na₂SO₄), and concentrated in vacuo. Flash chromatography $(SiO_2, 5 \text{ cm} \times 13 \text{ cm}, 10-15\% \text{ ethyl acetate/hexane gradient elution})$ afforded **3a** (2.25 g, 2.40 g theoretical, 94%) as a yellow, viscous oil. ¹H NMR (CDCl₃, 200 MHz, ppm) 7.61 (1 H, d, J = 16.5 Hz, CH=), 7.36–7.52 (5 H, m, ArH), 7.28 (1 H, d, J = 16.7 Hz, =CH), 5.52 (1 H, apparent t, J = 3.3 Hz, OCHO), 4.40 (2 H, q, J = 7.2 Hz, OCH₂CH₃), 3.90 (1 H, m, OCHHCH₂), 3.69 (1 H, m, OCHHCH₂), 1.89 (2 H, m, CHC H_2), 1.61 (4 H, m, CH₂CH₂), 1.36 (3 H, t, J = 7.2Hz, OCH₂CH₃); ¹³C NMR (CDCl₃, 50 MHz, ppm) 163.5 (C=O), 149.3 (C=N), 140.4 (CH=), 136.4 (C aromatic), 129.6 (CH aromatic), 128.9 (CH aromatic), 127.7 (CH aromatic), 113.9 (=CH), 102.0 (OC-HO), 62.8 (COCH₂CH₃), 61.8 (OCH₂CH₃), 28.5 (O₂CHCH₂), 24.8 (OCH₂CH₂), 19.3 (CH₂CH₂CH₂), 13.9 (CH₃); IR (neat) v_{max} 2946, 2872, 1722, 1448, 1356, 1320, 1262, 1206, 1176, 1154, 1130, 1118, 1102, 1076, 1064, 1042, 1020, 956, 904, 874 cm⁻¹; EIMS m/e (relative intensity) 219 (7), 129 (3), 85 (base), 77 (3), 67 (9), 57 (13); CIMS (2-methylpropane) m/e (relative intensity) 304 (M + H⁺, base), 220 (65), 85 (8); CIHRMS m/e 304.1546 ($C_{17}H_{21}NO_4$ requires 304.1548). Anal. Calcd for $C_{17}H_{21}NO_4$: C, 67.30; H, 6.99; N, 4.62. Found: C, 67.65; H, 7.27; N, 4.98.

Ethyl (*E*)-2-[(2-tetrahydropyranyloxy)imino]-3-decenoate (17b): ¹H NMR (CDCl₃, 200 MHz, ppm) 6.66 (1 H, dt, J = 16.2, 6.5 Hz, ==CH), 6.65 (1 H, d, J = 16.2 Hz, CH=), 5.44 (1 H, apparent t, J = 3.7 Hz, OCHO), 4.31 (2 H, q, J = 7.2 Hz, OCH₂CH₃), 3.84 (1 H, m, OCHHCH₂), 3.63 (1 H, m, OCHHCH₂), 2.22 (2 H, apparent q, J = 6.5 Hz, ==CHCH₂), 1.84 (2 H, m, O₂CHCH₂), 1.56 (4 H, m, CH₂CH₂), 1.35 (3 H, t, J = 7.2 Hz, OCH₂CH₃), 1.39–1.28 (8 H, m, (CH₂)₄), 0.89 (3 H, t, J = 6.7 Hz, CH₂CH₃); 1R (neat) ν_{max} 2932, 2858, 1722, 1370, 1320, 1204, 1184, 1116, 1042, 1020, 952, 904 cm⁻¹; CIMS (2-methylpropane) *m/e* (relative intensity) 312 (M + H⁺, 9), 228 (base), 85 (44); EIHRMS *m/e* 311.2096 (C₁₇H₂₉NO₄ requires 311.2097).

Ethyl (E)-2-[(2-tetrahydropyranyloxy)imino]-3-pentenoate (17c): ¹H NMR (CDCl₃, 200 MHz, ppm) 6.64 (1 H, dq, J = 16.1, 5.5 Hz, =CHCH₃), 6.51 (1 H, d, J = 16.2 Hz, CH=), 5.37 (1 H, apparent t, J = 3.7 Hz, OCHO), 4.24 (2 H, q, J = 7.1 Hz, OCH₂CH₃), 3.81 (1 H, m, OCHHCH₂), 3.61 (1 H, m, OCHHCH₂), 1.85 (3 H, d, J = 5.2 Hz, =CHCH₃), 1.78 (2 H, m, O₂CHCH₂), 1.57 (4 H, m, CH₂CH₂), 1.29 (3 H, t, J = 7.1 Hz, OCH₂CH₃); IR (neat) ν_{max} 2946, 2872, 1722, 1444, 1372, 1206, 1180, 1116, 1042, 1020, 958, 904 cm⁻¹; CIMS (2-methylpropane) m/e (relative intensity) 242 (M + H⁺, 22), 158 (base), 132 (23), 85 (51); CIHRMS m/e 242.1406 (C₁₂H₁₉NO₄ requires 242.1392).

General Procedure for the Deprotection of Oxime Tetrahydropyranyl Ethers: Ethyl (E)-2-(Hydroxyimino)-4-phenyl-3-butenoate (18a). A solution of 17a (1.29 g, 4.25 mmol, 0.07 M) in glacial acetic acid/ water/tetrahydrofuran (3:1:1, 60 mL) was warmed at 55 °C for 37 h. The cooled reaction mixture was diluted with water (100 mL) and extracted with ethyl acetate $(3 \times 100 \text{ mL})$. The combined extracts were washed with saturated aqueous sodium bicarbonate ($3 \times 100 \text{ mL}$), water $(2 \times 100 \text{ mL})$, and saturated aqueous sodium chloride $(1 \times 100 \text{ mL})$, dried (Na₂SO₄), and concentrated in vacuo. Flash chromatography $(SiO_2, 3 \text{ cm} \times 10 \text{ cm}, 5-10\% \text{ ethyl acetate/hexane gradient elution})$ afforded 18a (0.76 g, 0.93 g theoretical, 82%) as a white solid: mp 87-90 °C (EtOAc/hexane); ¹H NMR (CDCl₃, 200 MHz, ppm), 9.98 (1 H, br s, NOH), 7.85 (1 H, d, J = 16.8 Hz, CH=), 7.56 (2 H, dd, J = 7.8, 1.7 Hz, o-ArH), 7.36 (3 H, m, m, p-ArH), 7.27 (1 H, d, J = 16.7 Hz, ==CH), 4.40 (2 H, q, J = 7.2 Hz, OCH₂CH₃), 1.42 (3 H, t, J = 7.2 Hz, OCH₂CH₃); ¹³C NMR (CDCl₃, 50 MHz, ppm) 163.2 (C=O), 146.8 C=N), 140.7 (=CH), 136.5 (C aromatic), 129.6 (CH aromatic), 128.9 (CH aromatic), 127.7 (CH aromatic), 113.2 (=CH), 61.8 (CO₂CH₂C-H₃), 31.8 (CO₂CH₂CH₃); lR (neat) ν_{max} 3408, 2980, 1732, 1448, 1420, 1384, 1312, 1262, 1172, 1024, 1002, 976 cm⁻¹; EIMS *m/e* (relative intensity) 219 (M⁺, 27), 218 (51), 202 (7), 128 (base), 115 (43), 102 (21), 77 (19); CIMS (2-methylpropane) m/e (relative intensity) 220 (M + H⁺, base); EIHRMS m/e 219.0896 (C₁₂H₁₃NO₃ requires 219.0895). Anal. Calcd for C12H13NO3: C, 65.73; H, 5.99; N, 6.39. Found: C, 65.76; H, 6.05; N, 6.74.

Ethyl (*E*)-2-(hydroxyimino)-3-decenoate (18b): ¹H NMR (CDCl₃, 200 MHz, ppm) 9.36 (1 H, br s, NOH), 6.89 (1 H, dt, J = 16.2, 7.0 Hz, =-CH), 6.57 (1 H, d, J = 16.2 Hz, CH=-), 4.32 (2 H, q, J = 7.1 Hz, OCH₂CH₃), 2.23 (2 H, apparent q, J = 6.7 Hz, =-CHCH₂), 1.47-1.28 (8 H, m, (CH₂)₄), 1.36 (3 H, t, J = 7.1 Hz, OCH₂CH₃), 0.89 (3 H, t, J = 7.1 Hz, CH₂CH₃); ¹³C NMR (CDCl₃, 50 MHz, ppm) 163.4 (C= 0), 147.2 (C=N), 145.5 (=-CH), 115.6 (=-CH), 61.7 (CO₂CH₂CH₃), 33.9 (CH₂), 31.4 (CH₂), 28.5 (CH₂), 28.3 (CH₂), 22.3 (CH₂), 13.7 (CO₂CH₂CH₃), 10.2 (CH₂CH₃); IR (neat) ν_{max} 3264, 2958, 2930, 2858, 1730, 1420, 1374, 1318, 1182, 1022, 978 cm⁻¹; EIMS m/e (relative intensity) 227 (8, M⁺), 154 (12), 142 (76), 114 (70), 97 (57), 85 (47), 67 (27), 55 (base); CIMS (2-methylpropane) m/e (relative intensity) 228 (M + H⁺, base); EIHRMS m/e (relative intensity) 227.1511 (C₁₂H₂₁NO₃ requires 227.1521).

Etyl (*E*)-2-(hydroxyimino)-3-pentenoate (18c): ¹H NMR (CDCl₃, 200 MHz, ppm) 10.60 (1 H, br s, NOH), 7.03 (1 H, dq, *J* = 16.2, 6.8 Hz, =CH), 6.60 (1 H, d, *J* = 16.2 Hz, CH=), 4.32 (2 H, q, *J* = 7.1 Hz, OCH₂CH₃), 1.92 (3 H, d, *J* = 6.8 Hz, =CHCH₃), 1.35 (3 H, t, *J* = 7.1 Hz, OCH₂CH₃); ¹³C NMR (CDCl₃, 50 MHz, ppm) 163.5 (C= O), 146.7 (C=N), 140.6 (=CH), 117.3 (=CH), 61.8 (CO₂CH₂CH₃), 19.6 (CH₃), 13.9 (CO₂CH₂CH₃); IR (neat) ν_{max} 3268, 2984, 2940, 1730, 1444, 1374, 1318, 1280, 1180, 1160, 1022, 974 cm⁻¹; EIMS *m/e* (relative intensity) 157 (13, M⁺), 142 (83), 114 (base), 96 (54), 68 (45); CIMS (2-methylpropane) *m/e* (relative intensity) 158 (M + H⁺, base); EIHRMS *m/e* 157.0739 (C₇H₁₁NO₃ requires 157.0738).

General Procedure for the Preparation of N-(Phenylsulfonyl)- or N-(Methylsulfonyl)-1-aza-1,3-butadienes: Ethyl (E)-4-Phenyl-2-[(phenylsulfonyl)lmino]-3-butenoate (19a). A solution of 18a (500 mg, 2.28 mmol. 1.0 equiv) in anhydrous carbon tetrachloride (11.4 mL, 0.20 M) was cooled to 0 °C under nitrogen and treated sequentially with triethylamine (280 mg, 0.38 mL, 2.73 mmol, 1.2 equiv) and benzenesulfinyl chloride (400 mg, 0.29 mL, 2.48 mmol). The resulting reaction mixture was stirred at 0 °C for 25 min. The triethylamine hydrochloride was removed by filtration. The filtrate was stirred at 23 °C for 2 h and then concentrated in vacuo. Flash chromatography (Florisil, 3 cm × 9 cm, 10% ethyl acetate/hexane eluant) afforded 19a (0.54 g, 0.78 g theoretical, 69%) as a gold oil: ¹H NMR (CDCl₃, 200 MHz, ppm) 8.02 (2 H, d, J = 6.6 Hz, o-SO₂ArH), 7.61 (1 H, d, J = 16.9 Hz, CH=), 7.34–7.68 $(8 \text{ H}, \text{m}, \text{ArH}, m, p-SO_2\text{ArH}), 6.84 (1 \text{ H}, d, J = 16.5 \text{ Hz}, =CH), 4.56$ $(2 \text{ H}, q, J = 7.1 \text{ Hz}, \text{OCH}_2\text{CH}_3), 1.46 (3 \text{ H}, t, J = 7.0 \text{ Hz}, \text{OCH}_2\text{CH}_3);$ IR (neat) ν_{max} 3064, 2840, 1735, 1614, 1560, 1474, 1448, 1391, 1370, 1268, 1165, 1014, 970, 868 cm⁻¹; CIMS (2-methylpropane) m/e (relative intensity) 344 (M + H⁺, base); CIHRMS m/e 344.0939 (C₁₈H₁₇NO₄S requires 344.0957). Anal. Calcd for C₁₈H₁₇NO₄S: C, 62.95; H, 5.00; N, 4.08; S, 9.34. Found: C, 62.66; H, 5.18; N, 3.99; S, 8.96.

Ethyl (*E*)-2-[(phenylsulfonyl)imino]-3-decenoate (19b): ¹H NMR (CDCl₃, 200 MHz, ppm) 7.99 (2 H, d, J = 6.7 Hz, o-SO₂ArH), 7.64-7.54 (3 H, m, m, p-SO₂ArH), 6.79 (1 H, dt, J = 16.0, 6.8 Hz, =CHCH₂), 6.20 (1 H, d, J = 16.1 Hz, CH=), 4.42 (2 H, q, J = 7.0Hz, OCH₂CH₃), 2.30 (2 H, apparent q, J = 7.0 Hz, =CHCH₂), 1.47-1.28 (8 H, m, (CH₂)₄), 1.33 (3 H, t, J = 7.0 Hz, OCH₂CH₃), 0.87 (3 H, apparent t, CH₂CH₃); IR (neat) ν_{max} 2930, 2858, 1740, 1580, 1448, 1330, 1310, 1186, 1166, 1148, 1090, 752 cm⁻¹; EIMS m/e (relative intensity) 278 (2), 77 (base); CIMS (2-methylpropane) m/e (relative intensity) 352 (M + H⁺, base); CIHRMS m/e 352.1583 (C₁₈H₂₅NO₄S requires 352.1583).

Ethyl (E)-2-{(phenylsulfonyl)lmino}-3-pentenoate (19c): ¹H NMR (CDCl₃, 200 MHz, ppm) 7.96 (2 H, d, J = 7.8 Hz, o-SO₂ArH), 7.51 (3 H, m, m, p-SO₂ArH), 6.78 (1 H, dq, J = 16.2, 6.3 Hz, =CHCH₃), 6.22 (1 H, d, J = 15.8 Hz, CH=), 4.46 (2 H, q, J = 6.9 Hz, OCH₂CH₃), 1.98 (3 H, d, J = 6.2 Hz, =CHCH₃), 1.43 (3 H, t, J = 7.0 Hz, OCH₂CH₃); IR (neat) ν_{max} 2980, 2936, 1738, 1636, 1580, 1448, 1370, 1328, 1256, 1166, 1016, 964, 862 cm⁻¹; EIMS m/e (relative intensity) 281 (1, M⁺), 282 (M + H⁺, base); EIHRMS m/e 281.0728 (C₁₃H₁₅NO₄S requires 281.0722).

Ethyl (E)-2-[(methylsulfonyl)imino]-4-phenyl-3-butenoate (20a): ¹H NMR (CDCl₃, 200 MHz, ppm) 7.55 (2 H, m, o-ArH), 7.45 (1 H, d, J = 12.3 Hz, CH=), 7.44 (3 H, m, m,p-ArH), 6.90 (1 H, d, J = 12.1 Hz, =CH), 4.46 (2 H, q, J = 7.3 Hz, OCH₂CH₃), 3.16 (3 H, s, SO₂CH₃), 1.40 (3 H, t, J = 7.2 Hz, OCH₂CH₃); IR (neat) ν_{max} 2984, 2938, 1738, 1614, 1576, 1450, 1392, 1370, 1268, 1182, 1150, 1014, 968, 870 cm⁻¹; EIMS *m/e* (relative intensity) 204 (5), 131 (base), 103 (28), 77 (16); CIMS (2-methylpropane) *m/e* (relative intensity) 282 (M + H⁺, base); EIHRMS *m/e* 281.0725 (C₁₃H₁₅NO₄ requires 281.0721).

Ethyl (*E*)-2-[(methylsulfonyl)Imino]-3-decenoate (20b): ¹H NMR (CDCl₃, 200 MHz, ppm) 6.79 (1 H, dt, J = 15.7, 7.1 Hz, $=CHCH_2$), 6.23 (1 H, d, J = 16.1 Hz, CH=), 4.38 (2 H, q, J = 7.0 Hz, OCH₂CH₃), 3.17 (3 H, s, SO₂CH₃), 2.31 (2 H, q, J = 7.0 Hz, $=CHCH_2$), 1.37 (3 H, t, J = 7.0 Hz, OCH₂CH₃), 1.27 (8 H, m, (CH₂)₄), 0.87 (3 H, apparent t, J = 6.3 Hz, CH₂CH₃); 1R (neat) ν_{max} 2930, 2858, 1740, 1620, 1588, 1466, 1370, 1326, 1148, 1018, 968 cm⁻¹; EIMS *m/e* (relative intensity) 216 (16), 210 (13), 138 (base), 79 (51), 55 (54); CIMS (2methylpropane) *m/e* (relative intensity) 290 (M + H⁺, base); C1HRMS *m/e* 290.1424 (C₁₃H₂₃NO₄S requires 290.1426).

Ethyl (*E*)-2-[(methylsulfonyl)imino]-3-pentenoate (20c): ¹H NMR (CDCl₃, 200 MHz, ppm) 6.81 (1 H, dq, J = 16.0, 6.9 Hz, =CHCH₃), 6.25 (1 H, d, J = 16.5 Hz, CH=), 4.37 (2 H, q, J = 7.0 Hz, OCH₂CH₃), 3.17 (3 H, s, SO₂CH₃), 2.02 (3 H, d, J = 6.6 Hz, =CHCH₃), 1.36 (3 H, t, J = 7.1 Hz, OCH₂CH₃); IR (neat) ν_{max} 2938, 1736, 1636, 1586, 1372, 1318, 1184, 1148, 1016, 964, 810 cm⁻¹; CIMS (2-methylpropane) m/e (relative intensity) 220 (M + H⁺, base); EIHRMS m/e 219.0564 (C₈H₁₃NO₄S requires 219.0565).

General Procedures for the [4 + 2] Cycloaddition Reactions of N-(Phenylsulfonyl)- or N-(Methylsulfonyl)-1-aza-1,3-butadienes. Room-Temperature [4 + 2] Cycloaddition: $(2R^*, 4S^*)$ -2-Ethoxy-6-(ethoxycarbonyl)-4-phenyl-1-(phenylsulfonyl)-1,2,3,4-tetrahydropyridine (21a). A solution of 19a (88.0 mg, 0.26 mmol, 1.0 equiv) in anhydrous dichloromethane (0.51 mL, 0.50 M) under argon at 23 °C was treated with ethyl vinyl ether (73.9 mg, 1.02 mmol, 4.0 equiv). The reaction mixture was stirred at 23 °C for 24 h and then concentrated in vacuo. Flash chromatography (Florisil, 1.5 cm × 13 cm, 7% ethyl acetate/hexane eluant) afforded 21a (85.0 mg, 106 mg theoretical, 80%) as a pale yellow solid: mp 101-102 °C (EtOAc/hexane); ¹H NMR (C₆D₆, 200 MHz, ppm) 8.10 (2 H, dd, J = 5.4, 1.9 Hz, o-SO₂ArH), 7.07 (5 H, m, ArH), 6.95 (3 H, dd, J = 5.8, 1.8 Hz, m,p-SO₂ArH), 6.69 (1 H, d, J = 2.6 Hz, =CH, 5.11 (1 H, dd, J = 5.0, 2.5 Hz, NCHO), 4.18 (2 H, dq, J = 7.1, J = 7.12.7 Hz, CO_2CH_2CH), 3.78 (1 H, dq, J = 7.1, 2.4 Hz, $OCHHCH_3$), 3.08 $(1 \text{ H}, \text{dq}, J = 7.0, 2.4 \text{ Hz}, \text{OCHHCH}_3), 2.89 (1 \text{ H}, \text{dt}, J = 9.3, 3.0 \text{ Hz},$ CHPh), 2.11 (1 H, ddd, $J = 14.5, 9.1, 4.1, CH_aH_e$), 1.98 (1 H, dt, J =14.3, 2.5 Hz, CH_aH_e), 1.05 (3 H, t, J = 7.2 Hz, $CO_2CH_2CH_3$), 0.92 (3 H, t, J = 7.0 Hz, OCH_2CH_3 ; ¹³C NMR (CDCl₃, 50 MHz, ppm) 165.4 (C=O), 143.7 (C, C6), 139.0 (C aromatic), 133.5 (CH aromatic), 133.1 (CH aromatic), 129.2 (CH aromatic), 128.5 (CH aromatic), 128.4 (CH aromatic), 128.1 (CH aromatic), 128.0 (C aromatic), 126.8 (CH, C5), 82.1 (CH, C2), 63.1 (CO₂CH₂CH₃), 61.4 (OCH₂CH₃), 36.5 (CH, C4), 35.6 (CH₂, C3), 14.3 (CÓ₂CH₂CH₃), 13.9 (OCH₂CH₃); IR (neat) ν_{max} 2976, 2932, 1724, 1638, 1448, 1344, 1324, 1238, 1168, 1092, 1062, 1044, 962, 758 cm⁻¹; EIMS m/e (relative intensity) 415 (2, M⁺), 274 (17), 228 (base), 154 (26), 141 (36), 129 (27), 77 (86); CIMS (2-methylpropane) m/e (relative intensity) 371 (22), 370 (base), 228 (4), 205 (8); EIHRMS m/e 415.1448 (C22H25NO5S requires 415.1453). Anal. Calcd for $C_{22}H_{25}NO_5S$: C, 63.58; H, 6.08; N, 3.37; S, 7.72. Found: C, 63.27; H, 6.11; N, 3.54; S, 7.79.

The structure of **21a** was unambiguously established in a single-crystal X-ray structure determination.^{21b}

Base-Catalyzed Epimerization of (2R*,4S*)-2-Ethoxy-6-(ethoxycarbonyl)-4-phenyl-1-(phenylsulfonyl)-1,2,3,4-tetrahydropyridine (21a): Preparation of (2R*,4R*)-2-Ethoxy-6-(ethoxycarbonyl)-4-phenyl-1-(phenylsulfonyl)-1,2,3,4-tetrahydropyridine, A solution of 21a (10.0 mg, 24.0 µmol, 1.0 equiv) in anhydrous benzene (120 µL, 0.20 M) at 23 °C was treated with a solution of DBU (2 M in benzene, $3 \mu L$, 0.25 equiv). The reaction mixture was stirred at 23 °C for 1.5 h. The resulting reaction mixture was diluted with ether (10 mL), washed with 2% aqueous hydrochloric acid $(2 \times 5 \text{ mL})$ and saturated aqueous sodium chloride (1 \times 5 mL), dried (MgSO₄), and concentrated in vacuo: ¹H NMR of the mixture revealed a 1:2.5 ratio of endo/exo isomers. For exo-21a: ¹H NMR (C₆D₆, 200 MHz, ppm) 7.81 (2 H, m, o-SO₂ArH), 7.00-6.81 (8 H, m, PhH, m, p-SO₂ArH), 6.23 (1 H, dd, J = 4.4, 2.2 Hz, =CH), 5.40 (1 H, t, J = 3.4 Hz, NCHO), 3.93 (2 H, q, J = 7.1 Hz, CO₂CH₂CH₃), 3.45 (3 H, m, OCH₂CH₃, CHPh), 2.55 (1 H, apparent d, J = 17 Hz, $CH_{ax}H_{eq}$), 2.20 (1 H, dm, J = 17 Hz, $CH_{ax}H_{eq}$), 1.05 (3 H, t, J = 7.4 Hz, $CO_2CH_2CH_3$), 0.90 (3 H, t, J = 7.1 Hz, OCH_2CH_3).

Pressure-Promoted [4 + 2] Cycloaddition. $(2R^*, 3R^*, 4S^*)$ -2-Ethoxy-6-(ethoxycarbonyl)-3-methyl-4-phenyl-1-(phenylsulfonyl)-1,2,3,4tetrahydropyridine (28a). Ethyl (E)-4-phenyl-2-[(phenylsulfonyl)imino]-3-butenoate (19a; 28.0 mg, 81.5 µmol, 1.0 equiv) was placed in a Teflon tube sealed with a brass clamp at one end. A solution of (Z)ethyl-1-propenyl ether (31.0 mg, 360 µmol, 4.4 equiv) in anhydrous dichloromethane (160 μ L, 0.50 M) was added to the reaction vessel, and the mixture was purged with argon and sealed with another brass clamp. The reaction vessel was placed in a pressure reactor (6.2 kbar)³⁷ at 25 °C for 96 h. After depressurization, the reaction mixture was transferred to a round-bottom flask and concentrated in vacuo. Flash chromatography (Florisil, 1 cm × 14 cm, 5% ethyl acetate/hexane eluant) afforded 28a (19.0 mg, 35.0 mg theoretical, 54%) as a pale yellow solid: mp 73-74 °C (CHCl₃/hexane); ¹H NMR (CDCl₃, 200 MHz, ppm) 8.07 (2 H, dd, $J = 7.9, 1.3 \text{ Hz}, o-\text{SO}_2\text{ArH}$, 7.55 (3 H, m, m, p-SO₂ArH), 7.19 (5 H, s, ArH), 6.47 (1 H, d, J = 3.4 Hz, =CH), 4.77 (1 H, d, J = 2.8 Hz, NCHO), 4.34 (2 H, dq, J = 7.1, 3.7 Hz, CO₂CH₂CH₃), 3.57 (1 H, dq, J = 7.1, 2.3 Hz, OCHHCH₃), 3.38 (1 H, dd, J = 8.8, 3.3 Hz, CHPh), 3.01 (1 H, dq, J = 7.0, 2.3 Hz, OCHHCH₃), 2.16 (1 H, qdd, J = 7.3, 3.3, 2.4 Hz, $CHCH_3$), 1.36 (3 H, t, J = 7.1, $CO_2CH_2CH_3$), 0.98 (3 H, t, J = 7.0 Hz, OCH_2CH_3), 0.67 (3 H, d, J = 7.3 Hz, $CHCH_3$); ^{13}C NMR (CDCl₃, 50 MHz, ppm) 165.8 (C=O), 139.3 (C, C6), 138.9 (C

(37) DeShong, P.; Dicken, C. M.; Perez, J. J.; Shoff, R. M. Org. Prep. Proced. Int. 1982, 14, 369.

aromatic), 133.5 (CH aromatic), 131.1 (CH aromatic), 130.9 (CH aromatic), 129.2 (CH aromatic), 128.3 (CH aromatic), 127.6 (CH aromatic), 127.4 (C aromatic), 126.8 (CH, C5), 86.0 (CH, C2), 63.6 (CO₂CH₂CH₃), 61.5 (OCH₂CH₃), 42.4 (CH, C4), 35.8 (CH, C3), 14.7 (CH₃, C3), 14.3 (CO₂CH₂CH₃), 13.9 (OCH₂CH₃); 1R (neat) ν_{max} 2978, 2930, 1728, 1642, 1448, 1360, 1276, 1204, 1170, 1092, 984, 774 cm⁻¹; EIHRMS *m/e* (relative intensity) 384 (3), 288 (11), 242 (54), 168 (24), 141 (25), 131 (40), 103 (25), 86 (74), 77 (base), 58 (52); CIMS (2-methylpropane) *m/e* (relative intensity) 384 (base), 288 (16), 242 (22), 205 (31), 143 (36); EIHRMS *m/e* 429.1616 (C₂₃H₂₇NO₅S requires 429.1610).

The structure of 28a was unambiguously established in a single-crystal X-ray structure determination.^{21b}

 $(2R^*, 4S^*)$ -2-Ethoxy-6-(ethoxycarbonyl)-4-*n*-hexyl-1-(phenyl-sulfonyl)-1,2,3,4-tetrahydropyridine (21b): ¹H NMR (CDCl₃, 200 MHz, ppm) 7.93 (2 H, dd, J = 6.7, 1.7 Hz, o-SO₂ArH), 7.16 (3 H, m, *m*,*p*-SO₂ArH), 6.46 (1 H, d, J = 3.2 Hz, =CH), 5.04 (1 H, t, J = 3.6 Hz, NCHO), 4.30 (2 H, dq, J = 7.2, 3.3 Hz, CO₂CH₂CH₃), 3.60 (1 H, dq, J = 7.7, 2.4 Hz, OCHHCH₃), 3.18 (1 H, dq, J = 7.0, 2.6 Hz, OCHHCH₃), 1.81 (1 H, m, =CHCH), 1.65-1.52 (2 H, m, CH₂, C3), 1.35 (3 H, t, J = 7.2 Hz, CO₂CH₂CH₃), 1.23 (10 H, m, (CH₂)₅), 0.99 (3 H, t, J = 7.1 Hz, OCH₂CH₃), 0.84 (3 H, t, J = 6.9 Hz, CH₂CH₃); 1R (neat) ν_{max} 2956, 2930, 2858, 1732, 1636, 1448, 1362, 1312, 1272, 1170, 1126, 1096, 1018, 998, 756 cm⁻¹; EIMS *m/e* (relative intensity) 423 (2, M⁺), 250 (21), 236 (base), 152 (18), 141 (32), 77 (56); CIMS (2-methylpropane) *m/e* (relative intensity) 379 (23), 378 (base), 236 (44); EIHRMS *m/e* 423.2078 (C₂₂H₃₃NO₅S requires 423.2080).

 $(2R^*, 4S^*)$ -2-Ethoxy-6-(ethoxycarbonyl)-4-methyl-1-(phenyl-sulfonyl)-1,2,3,4-tetrahydropyridine (21c): ¹H NMR (C₆D₆, 200 MHz, ppm) 8.07 (2 H, dd, J = 5.6, 3.1 Hz, o-SO₂ArH), 7.89 (3 H, m, m,p-SO₂ArH), 6.37 (1 H, d, J = 2.4 Hz, =CH), 5.08 (1 H, dd, J = 2.4, 1.4 Hz, NCHO), 4.20 (2 H, dq, J = 7.1, 2.7 Hz, CO₂CH₂CH₃), 3.73 (1 H, dq, J = 7.1, 2.8 Hz, OCHHCH₃), 3.07 (1 H, dd, J = 7.1, 2.8 Hz, OCHHCH₃), 1.56 (1 H, ddd, J = 14.2, 7.9, 3.8 Hz, CH_{ax}H_{eq}), 1.40 (1 H, dt, J = 13.8, 1.2 Hz, CH_{ax}H_{eq}), 1.09 (3 H, t, J = 7.1 Hz, CO₂CH₂CH₃), 0.93 (3 H, t, J = 7.2 Hz, OCH₂CH₃), 0.89 (3 H, d, J = 7.9 Hz, CHCH₃); 1R (neat) ν_{max} 2978, 2934, 1728, 1642, 1446, 1390, 1302, 1264, 1172, 1068, 1026, 972, 760 cm⁻¹; EIMS m/e (relative intensity) 353 (9, M⁺), 308 (50), 166 (base), 77 (95); CIMS (2-methylpropane) m/e (relative intensity) 308 (base), 166 (4); EIHRMS m/e 353.1287 (C₁₇H₂₃NO₅S requires 353.1296).

(2R*,45*)-2-Ethoxy-6-(ethoxycarbonyl)-4-phenyl-1-(methylsulfonyl)-1,2,3,4-tetrahydropyridine (22a): ¹H NMR (CDCl₃, 200 MHz, ppm) 7.28 (5 H, s, ArH), 6.72 (1 H, d, J = 3.3 Hz, =CH), 5.40 (1 H, t, J = 3.7 Hz, NCHO), 4.23 (2 H, dq, J = 7.2, 3.5 Hz, CO₂CH₂CH₃), 3.67 (1 H, dq, J = 7.1, 1.7 Hz, OCHHCH₃), 3.60 (1 H, dt, J = 9.2, 3.3 Hz, CHPh), 3.42 (1 H, dq, J = 7.1, 1.5 Hz, OCHHCH₃), 3.35 (3 H, s, SO₂CH₃), 2.58 (1 H, ddd, J = 13.6, 9.2, 4.4 Hz, CH_{axHeq}), 2.30 (1 H, dt, J = 14.3, 3.3 Hz, CH_{axHeq}), 1.33 (3 H, t, J = 7.1 Hz, CO₂CH₂CH₃), 1.17 (3 H, t, J = 7.1 Hz, OCH₂CH₃); 1R (neat) ν_{max} 2978, 2936, 1724, 1644, 1452, 1390, 1346, 1322, 1240, 1218, 1160, 1120, 1070, 960, 778 cm⁻¹; EIMS m/e (relative intensity) 228 (70), 200 (11), 182 (16), 154 (32), 131 (base), 103 (49), 77 (32); CIMS (2-methylpropane) m/e(relative intensity) 340 (24), 308 (base), 262 (15), 228 (73), 81 (86); EIHRMS m/e 353.1296 (C₁₇H₂₃NO₅S requires 353.1297).

(2R*,4S*)-2-Ethoxy-6-(ethoxycarbonyl)-4-*n*-hexyl-1-(methyl-sulfonyl)-1,2,3,4-tetrahydropyridine (22b): ¹H NMR (C₆D₆, 200 MHz, ppm) 6.58 (1 H, d, J = 3.2 Hz, =CH), 5.31 (1 H, dd, J = 3.7, 2.6 Hz, NCHO), 4.07 (2 H, dq, J = 6.9, 3.7 Hz, CO₂CH₂CH₃), 3.61 (1 H, dq, J = 7.0, 1.8 Hz, OCHHCH₃), 3.03 (1 H, dq, J = 7.0, 1.8 Hz, OCHHCH₃), 3.03 (1 H, dq, J = 7.0, 1.8 Hz, OCHHCH₃), 2.02 (1 H, ddd, J = 12.4, 8.4, 3.6 Hz, CH_{ax}H_{eq}), 1.80 (2 H, apparent d, J = 12.6 Hz, CH_{ax}H_{eq}), -EHCH), 1.36-1.12 (10 H, m, (CH₂)₅), 0.97 (3 H, t, J = 7.2 Hz, CO₂CH₂CH₃), 0.96 (3 H, t, J = 7.1 Hz, OCH₂CH₃), 0.88 (3 H, t, J = 7.1 Hz, CH₃CH₃CH₃CH₃), 1.81 (12, 1090, 962 cm⁻¹; EIMS m/e (relative intensity) 361 (2, M⁺), 282 (13), 236 (base), 152 (59), 72 (20); CIMS (2-methylpropane) m/e (relative intensity) 316 (base), 238 (17), 81 (14); EIHRMS m/e 316.1923 (C₁₇H₃INO₅S requires 361.1923).

 $(2R^*, 4S^*)$ -2-Ethoxy-6-(ethoxycarbonyl)-4-methyl-1-(methyl-sulfonyl)-1,2,3,4-tetrahydropyridine (22c): ¹H NMR (C₆D₆, 200 MHz, ppm) 6.40 (1 H, d, J = 2.4 Hz, =CH), 5.27 (1 H, t, J = 2.6 Hz, NCHO), 4.03 (2 H, dq, J = 7.0, 2.1 Hz, CO₂CH₂CH₃), 3.62 (1 H, dq, J = 7.0, 2.0 Hz, OCHHCH₃), 2.97 (1 H, dq, J = 7.0, 2.1 Hz, OCHHCH₃), 2.95 (3 H, s, SO₂CH₃), 1.95 (2 H, m, CH_{ax}H_{eq}, CHCH₃), 1.60 (1 H, d, J = 13.5 Hz, CH_{ax}H_{eq}), 0.94 (9 H, m, CO₂CH₂CH₃), OCH₂CH₃, OCH₂CH₃), 1258, 1228, 1162, 1092, 1072, 968 cm⁻¹; EIMS m/e (relative intensity) 291 (5, M⁺), 246 (10), 212 (16), 166 (base); CIMS (2-methylpropane) m/e (relative intensity) 246 (base), 212 (2);

⁽³⁸⁾ Boger, D. L.; Nakahara, S. J. Org. Chem., in press.

EIHRMS m/e 291.1149 (C12H21NO5S requires 291.1140).

 $(2R*,4S*)-2-(Benzyloxy)-6-(ethoxycarbonyl)-4-phenyl-1-(phenyl-sulfonyl)-1,2,3,4-tetrahydropyrldine (27b): ¹H NMR (C₆D₆, 200 MHz, ppm) 8.05 (2 H, dd, J = 4.3, 2.2 Hz, o-SO₂ArH), 7.10-6.85 (13 H, m, ArH), 6.71 (1 H, d, J = 3.2 Hz, =CH), 5.19 (1 H, t, J = 3.6 Hz, NCHO), 4.85 (1 H, d, J = 11.7 Hz, OCHHPh), 4.23 (2 H, q, J = 7.3 Hz, CO₂CH₂CH₃), 4.22 (1 H, d, J = 11.4 Hz, OCHHPh), 2.85 (1 H, dt, J = 8.9, 3.4 Hz, CHPh), 2.10 (1 H, ddd, J = 11.1, 9.0, 4.1 Hz, CH_{ax}H_{eq}), 1.95 (1 H, dt, J = 11.1, 4.0 Hz, CH_{ax}H_{eq}), 1.06 (3 H, t, J = 7.3 Hz, CO₂CH₂CH₃); IR (neat) <math>\nu_{max}$ 3064, 2938, 1736, 1642, 1496, 1448, 1360, 1288, 1214, 1170, 1056, 964 cm⁻¹; EIMS *m/e* (relative intensity) 230 (19), 91 (base), 65 (4); CIMS (2-methylpropane) *m/e* (relative intensity) 370 (base), 336 (4), 230 (10); CIHRMS *m/e* 478.1674 (C₂₇H₂₇NO₅S requires 478.1688). (2R,3R*,4S*)-2-(Benzyloxy)-6-(ethoxycarbonyl)-3-methyl-4-

 $(2R, 3R^*, 4S^*)$ -2- (Benzyloxy)-6- (ethoxycarbonyl)-3-methyl-4phenyl-1- (phenylsulfonyl)-1,2,3,4-tetrahydropyridine (28b), ¹H NMR (CDCl₃, 200 MHz, ppm) 8.10 (2 H, dd, J = 6.7, 1.5 Hz, o-SO₂ArH), 7.70–7.54 (3 H, m, m,p-SO₂ArH), 7.29–7.02 (10 H, m, ArH), 6.51 (1 H, d, J = 3.2 Hz, =CH), 4.88 (1 H, d, J = 2.6 Hz, NCHO), 4.64 (1 H, d, J = 12.0 Hz, OCHHPh), 4.37 (2 H, dq, J = 7.0, 3.7 Hz, CO₂CH₂CH₃), 4.07 (1 H, d, J = 11.9 Hz, OCHHPh), 3.42 (1 H, dd, J = 8.9, 3.3, Hz, CHPh), 2.17 (1 H, qdd, J = 7.2, 8.8, 2.6 Hz, CHCH₃), 1.35 (3 H, t, J = 7.2 Hz, CO₂CH₂CH₃), 0.69 (3 H, d, J = 7.2 Hz, CHCH₃); IR (neat) ν_{max} 2926, 1728, 1642, 1494, 1362, 1276, 1204, 1170, 1090, 1050, 874 cm⁻¹; CIMS (2-methylpropane) m/e (relative intensity) 384 (base), 350 (12), 244 (19), 143 (20); E1HRMS m/e 491.1765 (C₂₈H₂₉NO₅S requires 491.1766).

 $(2R^*, 4R^*)$ -6-(Ethoxycarbonyl)-2,4-diphenyl-1-(phenylsulfonyl)-1,2,3,4-tetrahydropyridine (29a). ¹H NMR (C₆D₆, 200 MHz, ppm) 8.08 (2 H, d, J = 7.3 Hz, o-SO₂ArH), 7.20-6.90 (11 H, m), 6.66 (1 H, d, J = 3.1 Hz, ==CH), 6.44 (2 H, d, J = 7.2 Hz, o-PhH), 5.22 (1 H, t, J = 6.4 Hz, NCHPh), 4.23 (2 H, dq, J = 7.3, 3.7 Hz, CO₂CH₂CH₃), 2.91 (1 H, td, J = 6.1, 3.7 Hz, CHPh), 2.31 (1 H, ddd, J = 14.0, 6.7, 6.1 Hz, CH_{ax}H_{eq}), 2.00 (1 H, ddd, J = 14.0, 6.7, 6.0 Hz, CH_{ax}H_{eq}), 1.45 (3 H, t, J = 7.3 Hz, CO₂CH₂CH₃); IR (neat) ν_{max} 3030, 2926, 2854, 1728, 1638, 1602, 1496, 1448, 1364, 1256, 1168, 1140, 1094, 964, 846 cm⁻¹; EIMS m/e (relative intensity) 306 (23), 231 (18), 131 (20), 103 (32), 91 (30), 77 (base), 51 (28); CIMS (2-methylpropane) m/e (relative intensity) 448 (M + H⁺, base); EIHRMS m/e 447.1504 (C₂₆H₂₅NO₄S requires 447.1504).

 $(2R^*,4R^*)$ -6-(Ethoxycarbonyl)-2-(4'-methoxyphenyl)-4-(phenylsulfonyl)-1,2,3,4-tetrahydropyridine (29b). ¹H NMR (C₆D₆, 200 MHz, ppm) 8.15 (2 H, dd, J = 6.9, 2.9 Hz, o-SO₂ArH), 7.20-6.90 (8 H, m, m,p-SO₂ArH, PhH), 6.66 (1 H, d, J = 3.4 Hz, =-CH), 6.51 (4 H, d, J = 8.8 Hz, ArOCH₃), 5.18 (1 H, t, J = 6.6 Hz, NCHPh), 4.25 (2 H, dq, J = 7.1, 3.6 Hz, CO₂CH₂CH₃), 3.23 (3 H, s, OCH₃), 2.95 (1 H, dt, J = 6.6, 3.5 Hz, CHPh), 2.35 (1 H, ddd, J = 13.8, 6.2, 6.1 Hz, CH_{ax}H_{cq}), 2.10 (1 H, ddd, J = 13.8, 7.0, 6.8 Hz, CH_{ax}H_{cq}), 1.10 (3 H, t, J = 7.1Hz, CO₂CH₂CH₃); IR (neat) ν_{max} 2928, 1728, 1612, 1514, 1448, 1362, 1250, 1168, 1032, 754 cm⁻¹; EIMS m/e (relative intensity) 477 (12, M⁺), 404 (8), 336 (60), 134 (base), 77 (51); C1MS (2-methylpropane) m/e(relative intensity) 478 (M + H⁺, 68), 338 (base); E1HRMS m/e477.1610 (C₂₇H₂₇NO₅S requires 477.1610).

 $(2R^*, 3S^*, 4S^*)$ -2-Ethoxy-6-(ethoxycarbonyl)-3-methyl-4-phenyl-1-(phenylsulfonyl)-1,2,3,4-tetrahydropyridine (30): ¹H NMR (C₆D₆, 200 MHz, ppm) 8.01 (2 H, d, J = 7.6 Hz, o-SO₂ArH), 7.00–6.84 (8 H, m, ArH), 6.67 (1 H, dd, J = 3.6, 1.8 Hz, =CH), 5.07 (1 H, d, J = 4.4 Hz, NCHO), 4.16 (2 H, dq, J = 7.0, 3.3 Hz, CO₂CH₂CH₃), 4.00 (1 H, dq, J = 7.4, 1.8 Hz, OCHHCH₃), 3.42 (1 H, dq, J = 7.0, 1.7 Hz, OCHHCH₃), 2.20 (1 H, m, CHCH₃), 2.08 (1 H, dd, J = 10.2, 3.0 Hz, CHPh), 1.09 (6 H, m, CO₂CH₂CH₃), OCH₂CH₃), 0.77 (3 H, d, J = 6.6 Hz, CHCH₃); 1R (neat) ν_{max} 2976, 2928, 1734, 1636, 1560, 1448, 1362, 1172, 1088, 1030, 750 cm⁻¹; EIMS m/e (relative intensity) 288 (21), 242 (38), 196 (12), 168 (25), 141 (34), 86 (94), 77 (base), 58 (61); CIMS (2-methylpropane) m/e (relative intensity 384 (base), 244 (5); E1HRMS m/e 429.1614 (C₂₃H₂₇NO₅S requires 429.1610).

 $(4R^*)$ -6-(Ethoxycarbonyl)-2,2-dimethoxy-4-phenyl-1-(phenylsulfonyl)-1,2,3,4-tetrahydropyridine (31): ¹H NMR (C₆D₆, 200 MHz, ppm) 8.45 (2 H, dd, J = 6.3, 1.4 Hz, o-SO₂ArH), 7.05-6.96 (8 H, m, ArH), 6.58 (1 H, d, J = 3.5 Hz, =CH), 4.16 (2 H, dq, J = 7.3, 1.4 Hz, CO₂CH₂CH₃), 3.60 (1 H, td, J = 9.9, 3.5 Hz, CHPh), 3.10 (3 H, s, OCH₃), 2.74 (3 H, s, OCH₃), 2.51 (1 H, t, J = 10.9 Hz, CH_{ax}H_{eq}), 2.32 (1 H, dd, J = 9.1, 5.0 Hz, Ch_{ax}H_{eq}), 1.01 (3 H, t, J = 7.2 Hz, CO₂CH₂CH₃); IR (neat) ν_{max} 3062, 2946, 1726, 1648, 1492, 1450, 1324, 1274, 1168, 1124, 1088, 1050, 980 cm⁻¹; EIMS *m/e* (relative intensity) 290 (33), 141 (9), 121 (16), 88 (base), 77 (39), 58 (29), 51 (12); CIMS (2-methylpropane) *m/e* (relative intensity) 432 (M + H⁺, base); C1HRMS *m/e* 432.1481 (C₂₂H₂₅NO₆S requires 432.1481).

(2R*,3S*,4R*)-3-Acetoxy-2-(benzyloxy)-6-(ethoxycarbonyl)-4phenyl-1-(phenylsulfonyl)-1,2,3,4-tetrahydropyridine (32): ¹H NMR (CDCl₃, 200 MHz, ppm) 8.10 (2 H, dd, J = 6.9, I.3 Hz, o-SO₂ArH), 7.56 (3 H, m, m.p-SO₂ArH), 7.20 (3 H, m, m.p-CH₂ArH), 7.15 (5 H, m, Ph), 6.95 (2 H, m, o-CH₂ArH), 6.50 (1 H, dd, J = 3.5, 0.9 Hz, =-CH), 5.47 (1 H, d, J = 2.7 Hz, NCHOBn), 5.27 (1 H, dd, J = 2.8, 1.7 Hz, CHOAc), 4.38 (1 H, d, J = 11.5 Hz, OCHHPh), 4.35 (2 H, dq, J = 7.1, 2.8 Hz, CO₂CH₂CH₃), 4.00 (1 H, d, J = 11.4 Hz, OCHHPh), 3.43 (1 H, t, J = 3.4 Hz, CHPh), 2.05 (3 H, s, COCH₃), 1.35 (3 H, t, J = 7.1 Hz, CO₂CH₂CH₃); IR (neat) ν_{max} 2926, 1730, 1642, 1448, 1370, 1352, 1280, 1244, 1154, 1092, 1052, 868 cm⁻¹; EIMS m/e (relative intensity) 368 (23), 141 (14), 128 (17), 115 (19), 105 (36), 91 (86), 77 (base), 57 (25), 51 (34); CIMS (2-methylpropane) m/e (relative intensity) 405 (base), 317 (40), 288 (23), 244 (19), 228 (65), 218 (23), 143 (62); CIHRMS m/e 536.1738 (C₂₉H₂₉NO₇S requires 536.1743).

(2*R**,3*R**,4*R**)-3-Acetoxy-2-(benzyloxy)-6-(ethoxycarbonyl)-4phenyl-1-(phenylsulfonyl)-1,2,3,4-tetrahydropyridine (33): ¹H NMR (CDCl₃, 200 MHz, ppm) 8.07 (2 H, dd, J = 7.0, 1.5 Hz, o-SO₂ArH), 7.61 (3 H, m, *m*,*p*-SO₂ArH), 7.23 (3 H, m, *m*,*p*-CH₂ArH), 7.13 (5 H, s, PhH), 7.05 (2 H, m, o-CH₂ArH), 6.50 (1 H, d, J = 3.3 Hz, ==CH), 5.15 (1 H, d, J = 3.5 Hz, NCHOBn), 4.95 (1 H, dd, J = 9.1, 3.5 Hz, CHOAc), 4.65 (1 H, d, J = 12.0 Hz, OCHHPh), 4.35 (2 H, dq, J = 7.1, 1.1 Hz, CO₂CH₂CH₃), 4.17 (1 H, d, J = 12.0 Hz, OCCH₃), 1.35 (3 H, t, J = 7.25 Hz, $J = CO_2$ CH₂CH₃); IR (neat) ν_{max} 3032, 2930, 2856, 1734, 1646, 1448, 1368, 1316, 1280, 1236, 1170, 1060, 928 cm⁻¹; EIMS *m/e* (relative intensity) 368 (16), 288 (9), 141 (9), 91 (base), 77 (31); CIMS (2-methylpropane) *m/e* (relative intensity) 428 (base), 405 (25), 288 (12), 228 (19), 143 (24); CIHRMS *m/e* 536.1728 (C₂₉H₂₉NO₇S requires 536.1743).

Ethyl (E)-4-[(Phenylsulfonyl)imino]-2-butenoate (35). A solution of ethyl 4-oxo-2-butenoate³⁰ (826 mg, 6.45 mmol) and benzenesulfonamide (1.50 g, 6.70 mmol, 1.03 equiv) in methylene chloride (25 mL) was cooled to 0 °C and treated with triethylamine (2.1 mL, 15 mmol, 2.33 equiv). The mixture was cooled to -5 °C, and a solution of titanium tetrachloride in methylene chloride (6.0 mL, 0.64 m, 3.8 mmol, 0.59 equiv) was added dropwise over 20 min. The resulting reaction mixture was stirred for 9 h at -5 to 0 °C and at 22 °C for 1 h. Filtration of the mixture through Celite and concentration of the filtrate afforded a brown solid. Redissolution of the solid in ether (50 mL, 2 h), filtration, and concentration of the filtrate afforded 35 (1.04 g, 1.72 g theoretical, 60%), which was sufficiently pure by ¹H NMR (homogeneous) for use in the Diels-Alder reactions: yelow solid; mp 87-89 °C (ether/hexane (1:1); ¹H NMR (CDCl₃, 300 MHz, ppm) 8.74 (d, 1 H, C4-H, J = 9.3 Hz), 7.97 (d, 2 H, aromatic) 7.60 (m, 3 H, aromatic), 7.31 (dd, 1 H, C3-H, J = 9.3, 15.7 Hz), 6.73 (d, 1 H, C2-H, J = 15.7 Hz), 4.28 (q, 2 H, $CO_2CH_2CH_3$, J = 7.2 Hz), 1.32 (t, 3 H, $CO_2CH_2CH_3$, J = 7.2 Hz); IR (KBr) v_{max} 3062, 2984, 1713, 1632, 1602, 1576, 1450, 1354, 1323, 1288, 1181, 1171, 1149, 1091, 1043, 996 cm⁻¹; EIMS m/e (relative intensity) 141 (24), 126 (7), 98 (6), 93 (5), 78 (7), 77 (base), 73 (11), 56 (16); CIMS (2-methylpropane) m/e (relative intensity) 268 (M + H⁺, base). Anal. Calcd for C₁₂H₁₃NO₄S: C, 53.93; H, 4.90; N, 5.24. Found: C, 53.90; H, 5.06; N, 5.49

Ethyl (E)-4-[(Methylsulfonyl)imino]-2-butenoate (36), A solution of ethyl 4-oxo-2-butenoate30 (497 mg, 3.88 mmol) and methanesulfonamide (374 mg, 3.93 mmol, 1.03 equiv) in methylene chloride (15 mL) was cooled to 0 °C and treated with triethylamine (1.25 mL, 8.90 mmol, 2.3 equiv). The resulting reaction mixture was cooled to -6 °C, and a solution of titanium tetrachloride in methylene chloride (3.6 mL, 0.64 M, 2.3 mmol, 0.59 equiv) was added dropwise over 14 min. The reaction mixture was stirred at -2 to 0 °C for 9.5 h and allowed to warm to 25 °C over 30 min. Filtration of the mixture through Celite and concentration of the filtrate afforded a brown solid. Redissolution of the solid in ether (30 mL, 2 h), filtration, and concentration of the filtrate afforded crude 36 as a yellow oil that solidified on standing at 4 °C (367 mg, 795 mg theoretical, 46%) and that was sufficiently pure by 'H NMR (homogeneous) for use in the Diels-Alder reactions: ¹H NMR (CDCl₃, 300 MHz, ppm) 8.73 (d, 1 H, C4-H, J = 9.5 Hz), 7.34 (dd, 1 H, C3-H, J = 9.5, 15.8 Hz), 6.75 (d, 1 H, C2-H, J = 15.8 Hz), 4.30 (q, 2 H, $CO_2CH_2CH_3$, J = 7.3 Hz), 3.10 (s, 3 H, CH_3SO_2), 1.35 (t, 3 H, CO_2) CH_2CH_3 , J = 7.3 Hz); 1R (neat) ν_{max} 3277, 2935, 1718, 1636, 1597, 1560, 1370, 1308, 1261, 1191, 1154, 1028, 969, 801 cm⁻¹; EIMS m/e (relative intensity) 205 (4, M⁺), 160 (4), 132 (13), 126 (6), 99 (4), 98 (44), 96 (25), 95 (27), 83 (20), 82 (25), 81 (10), 80 (base), 79 (68), 64 (13), 55 (29), 54 (25); CIMS (2-methylpropane) m/e (relative intensity) 206 (M + H, base); C1HRMS m/e 206.0489 (C7H11NO4S requires 206.0487)

General Procedure for Room-Temperature Diels-Alder Reaction of 35 and 36. $(2R^*,4S^*)$ -2-(Benzyloxy)-4-(ethoxycarbonyl)-1-(phenylsulfonyl)-1,2,3,4-tetrahydropyridine (37b). A solution of 35 (71.1 mg, 0.27 mmol) in methylene chloride (0.53 mL, 0.50 M) was cooled to 0 °C and treated with benzyl vinyl ether (190 mg, 1.41 mmol, 5.3 equiv), and

the mixture was allowed to warm gradually to 21 °C. Small aliquots were removed from the reaction mixture to monitor the progress by ¹H NMR. The reaction was judged complete (30:1 endo/exo) after 45.5 h. Evaporation of solvent in vacuo and purification of the residue by flash column chromatography (Florisil, 12 × 1.5 cm, 20% ethyl acetate/hexane eluant) afforded **37b** as a white solid (94 mg, 107 mg theoretical, 88%, 25:1 endo/exo). For pure **37b**: mp 79-80.5 °C (white needles, ether/ hexane (1:1)); ¹H NMR (CDCl₃, 300 MHz, ppm) 7.76 (m, 2 H, aromatic), 7.51 (m, 3 H, aromatic), 7.27 (m, 5 H, aromatic), 6.67 (dt, 1 H, C6-H, J = 1.3, 8.2 Hz), 5.65 (m, 2 H, C2-H and C5-H), 4.71 (d, 1 H, OCHHPh, J = 11.8 Hz), 4.57 (d, 1 H, OCHHHPh, J = 11.8 Hz), 3.92 $(m, 2 H, CO_2CH_2CH_3)$, 2.81 (m, 1 H, C4-H), 2.70 (dt, 1 H, C3-H_{eq}), J = 1.3, 13.8 Hz), 1.20 (ddd, 1 H, C3-H_{ax}, J = 2.3, 7.6, 13.8 Hz), 1.07 (t, 3 H, CO₂CH₂CH₃, J = 7.1 Hz); ¹³C NMR (CDCl₃, 50 MHz, ppm) 172.7 (CO₂Et), 139.6 (C aromatic) 138.1 (C aromatic), 133.4 (CH aromatic), 129.7 (CH aromatic), 128.4 (CH aromatic), 127.9 (CH aromatic), 127.7 (CH aromatic), 127.1 (CH aromatic), 122.9 (CH, C6), 108.1 (CH, C5), 81.0 (CH, C2), 69.7 (OCH₂Ph), 61.0 (CO₂CH₂CH₃), 34.0 (CH, C4), 28.4 (CH₂, C3), 13.9 (CO₂CH₂CH₃); IR (KBr) ν_{max} 2976, 2937, 2895, 1728, 1450, 1363, 1348, 1333, 1311, 1293, 1271, 1253 1214, 1175, 1160, 1135, 1106, 1057, 1030, 932, 734, 691 cm⁻¹; EIMS m/e (relative intensity) 294 (2), 220 (4), 152 (2), 141 (5), 132 (6), 108 (2), 107 (4), 105 (6), 91 (base), 80 (9), 79 (8), 78 (6), 65 (5); CIMS (2-methylpropane) m/e (relative intensity) 294 (M + H⁺ - HOCH₂Ph, base); EIHRMS m/e 401.1307 (C₂₁H₂₃NO₅S requires 401.1297). Anal. Calcd for C₂₁H₂₃NO₅S: C, 62.83; H, 5.77; N, 3.49. Found: C, 62.75; H, 5.91; N, 3.72

(2R*,4S*)-2-Ethoxy-4-(ethoxycarbonyl)-1-(phenylsulfonyl)-1,2,3,4tetrahydropyridine (37a). Conditions: ethyl vinyl ether (5 equiv), 0.28 mmol scale, 46 h, 21 °C. Examination of the crude product by ¹H NMR (500 MHz) showed a 29.5:1 mixture of endo/exo isomers (isolated 37a 82%, 22:1 (endo/exo)). For pure 37a: ¹H NMR (CDCl₃, 300 MHz, ppm) 7.80 (d, 2 H, aromatic, J = 7.0 Hz), 7.50 (m, 3 H, aromatic), 6.65 (dd, 1 H, C6-H, J = 1.3, 9.7 Hz), 5.30 (ddd, 1 H, C5-H, J = 1.2, 6.0, J = 1.2, 5.0, J = 1.2, 5.0, J = 1.2, 5.0, J = 1.2, J = 1.2, 5.0, J = 1.2, J9.7 Hz), 5.26 (broad s, 1 H, C2-H), 4.10 (m, 2 H, CO2CH2CH3), 3.67 (m, 1 H, OCHHCH₃), 3.51 (m, 1 H, OCHHCH₃), 2.79 (apparent t, 1 H, C4-H, J = 6.0 Hz), 2.60 (dt, 1 H, C3-H_{eq}, J = 1.2, 12.8 Hz), 1.23 $(t, 3 H, OCH_2CH_3, J = 7.2 Hz), 1.18 (m, 1H, C3-H_{ax}, C3), 1.05 (t, 3)$ H, $CO_2CH_2CH_3$, J = 7.0 Hz); ¹³C NMR (CDCl₃, 50 MHz, ppm) 172.9 (CO₂Et), 139.9 (C aromatic), 133.3 (CH aromatic), 129.6 (CH aromatic), 127.1 (CH aromatic), 123.0 (CH, C6), 107.6 (CH, C5), 81.0 (CH, C2), 63.3 (CO₂CH₂CH₃), 61.0 (OCH₂CH₃), 34.0 (CH, C4), 28.4 $(CH_2, C3)$, 14.7 $(CO_2CH_2CH_3)$, 14.1 (OCH_2CH_3) ; IR (neat) ν_{max} 2977, 2929, 1730, 1701, 1685, 1654, 1447, 1396, 1364, 1350, 1337, 1311, 1267, 1172, 1108, 1046, 919, 728 cm⁻¹; EIMS m/e (relative intensity) 294 (13), 266 (26), 220 (11), 152 (21), 141 (17), 124 (15), 103 (25), 96 (25), 81 (10); 80 (base), 77 (36), 73 (32), 68 (10); CIMS (2-methylpropane) m/e (relative intensity) 294 (M + H⁺ - EtOH, base); ElHRMS m/e 339.1136 (C₁₆H₂₁NO₅S requires 339.1140). Anal. Calcd for C₁₆H₂₁NO₅S: C, 56.62; H, 6.24; N, 4.13. Found: C, 56.73; H, 6.54; N. 4.18.

Diagnostic ¹H NMR signals utilized for the estimation of the endo/ exo ratio (by integration) for the minor cycloadduct are as follows: 3.34 (m, 1 H, C4-H), 2.15 (m, 1 H, C3-H_{ex}). This was established to be the exo diastereomer by deliberate epimerization as detailed in the following text.

Base-Catalyzed Epimerization of $(2R^*,4S^*)$ -2-Ethoxy-4- (ethoxy-carbonyl)-1-(phenylsulfonyl)-1,2,3,4-tetrahydropyridine (37a): Preparation of $(2R^*,4R^*)$ -2-Ethoxy-4- (ethoxycarbonyl)-1-(phenylsulfonyl)-1,2,3,4-tetrahydropyridine. A solution of 37a (9.3 mg, 27 μ mol) in dry benzene (0.12 mL) was treated with a solution of DBU (2 M in benzene, 10 μ mol, 1 equiv), and the mixture was stirred at 21 °C for 1.5 h. The resulting reaction mixture was diluted with ether (5 mL) and washed with aqueous hydrochloric acid (2%, 2 × 3 mL). The organic phase was dried (MgSO₄) and concentrated in vacuo. A 4.5:1 mixture of isomers was obtained (4.5:1 C4 epimers) with the major isomer having the (2R*,4R*) relative configuration: ¹H NMR (CDCl₃, 300 MHz, ppm) 7.77 (dd, 2 H, aromatic, J = 1.6, 7 Hz), 7.53 (m, 3 H, aromatic), 6.59 (ddd, 1 H, C6-H, J = 1.26, 2.50, 8.3 Hz), 5.25 (m, 2 H, C5-H and C2-H), 4.09 (q, 2 H, CO₂CH₂CH₃, J = 7.1 Hz), 3.82 (m, 1 H, OCHHCH₃), 3.64 (m, 1 H, OCHHCH₃), 3.34 (m, 1 H, C4-H), 2.15 (m, 1 H, C3-H_{eq}), 1.20 (m, 7 H, CO₂CH₂CH₃, OCH₂CH₃ and C3-H_{ax}).

 $(2R^*,4S^*)$ -2-Ethoxy-4-(ethoxycarbonyl)-1-(methylsulfonyl)-1,2,3,4tetrahydropyridine (38a), Conditions: ethyl vinyl ether (5 equiv), 0.26 mmol scale, 56 h, 21 °C. Examination of the crude product by ¹H NMR (300 MHz) showed a 27.5:1 mixture of endo/exo isomers (isolated 38a 73%, 21:1 (endo/exo)). For pure 38a: ¹H NMR (CDCl₃, 300 MHz, ppm) 6.52 (d, 1 H, C6-H, J = 8.3 Hz), 5.28 (m, 2 H, C5-H and C2-H), 4.15 (q, 2 H, CO₂CH₂CH₃, J = 7.1 Hz), 3.53 (q, 2 H, OCH₂CH₃, J = 7.0 Hz), 3.01 (m, 1 H, C4-H), 2.97 (s, 3 H, CH₃SO₂), 2.98 (dd, 1 H, C3-H_{eq}, J = 1.2, 14.1 Hz), 1.82 (ddd, 1 H, C3-H_{ax}, J = 1.7, 7.3, 14.1 Hz), 1.27 (t, 3 H, CO₂CH₂CH₃, J = 7.1 Hz), 1.13 (t, 3 H, OCH₂CH₃, J = 7.0 Hz); diagnostic ¹H NMR signals utilized for the estimation of the endo/exo ratio (by integration) for the minor cycloadduct were 3.40 (m, 1 H, C4-H), 2.45 (m, 1 H, C3-H); ¹³C NMR (CDCl₃, 50 MHz, ppm) 172.9 (CO₂Et), 123.3 (CH, C6), 105.5 (CH, C5), 81.2 (CH, C2), 63.5 (CO₂CH₂CH₃), 61.1 (OCH₂CH₃), 41.0 (CH₂SO₂), 33.9 (CH, C4), 27.8 (CH₂, C3), 14.8 (CO₂CH₂CH₃), 14.2 (OCH₂CH₃); 1R (neat) ν_{max} 2978, 1730, 1654, 1438, 1336, 1268, 1211, 1166, 1102, 1046, 952, 922, 762 cm⁻¹; EIMS *m/e* (relative intensity) 232 (11), 204 (55), 198 (7), 158 (22), 124 (91), 96 (12), 81 (13), 80 (base), 72 (10), 68 (13), 53 (9); CIMS (2-methylpropane) *m/e* (relative intensity) 232 (M + H⁺ – EtOH, base); EIHRMS *m/e* 277.0984 (C₁₁H₁₉NO₃S requires 277.0984). Anal. Calcd for C₁₁H₁₉NO₃S: C, 47.64; H, 6.91; N, 5.05. Found: C, 47.81; H, 7.24; N, 4.77.

(2S*,3S*,4R*)-2-Ethoxy-4-(ethoxycarbonyl)-3-methyl-1-(phenylsulfonyl)-1,2,3,4-tetrahydropyridine (39a-endo). Conditions: (*E*)-ethyl-1-propenyl ether (3.1 equiv), 0.17 mmol scale, 37 h, 21 °C. Examination of crude ¹H NMR (300 MHz) showed a 2:1 mixture of endo/exo isomers (isolated 39a 93%, 2.2:1 (endo/exo)). For pure 39aendo: ¹H NMR (CDCl₃, 300 MHz, ppm) 7.82 (m, 2 H, aromatic), 7.45 (m, 3 H, aromatic), 6.63 (d apparent triplet, 1 H, C6-H, J = 1.1, 8.5Hz), 5.11 (ddd, 1 H, C5-H, J = 1.3, 5.5, 8.5 Hz), 5.01 (d, 1 H, C2-H, J = 1.3 Hz), 4.09 (m, 2 H, CO₂CH₂CH₃), 3.54 (m, 2 H, OCH₂CH₃), 2.85 (ddq, 1 H, C3-H, J = 1.3, 5.5, 7.3 Hz), 2.51 (d, 1 H, C4-H, J = 1.3, 5.5, 7.3 Hz)5.5 Hz), 1.23 (t, 3 H, $CO_2CH_2CH_3$, J = 7.1 Hz), 1.01 (t, 3 H, OCH_2 - CH_3 , J = 7.0 Hz), 0.47 (d, 3 H, CH_3CH , J = 7.3 Hz); ¹³C NMR (CDCl₃, 50 MHz, ppm) 172.9 (CO₂Et), 140.6 (C aromatic), 133.4 (CH aromatic), 129.4 (CH aromatic), 127.4 (CH aromatic), 122.0 (CH, C6), 103.9 (CH, C5), 85.6 (CH, C2), 63.5 (CO2CH2CH3), 60.9 (OCH2CH3), 41.3 (CH, C4), 32.7 (CH, C3), 15.9 (CO₂CH₂CH₃), 14.8 (OCH₂CH₃), 14.2 (CH₃CH); IR (neat) ν_{max} 2977, 2931, 1735, 1654, 1480, 1448, 1363, 1341, 1257, 1172, 1112, 1092, 1027, 995, 928, 909, 881, 853, 759, 729 cm⁻¹; EIMS m/e (relative intensity) 292 (46), 280 (25), 141 (15), 138 (13), 110 (16), 94 (base), 86 (48), 84 (6), 82 (17), 72 (45), 58 (25); CIMS (2-methylpropane) m/e (relative intensity) 308 (M + H⁺ -EtOH, base); EIHRMS m/e 353.1297 (C17H23NO5S requires 353.1297).

Irradiation of C4-H resulted in a 7.6% increase in the adjacent methyl signal (CH₃CH) and a 12.7% increase in the C5-H signal in the NOE difference spectrum. Irradiation of the methyl substituent at C3 (C- H_3 CH) resulted in a 4% increase in the signal due to the ortho hydrogens of the phenyl ring, a 4.1% increase in C2-H, a 7.8% increase in C4-H and a 7.6% increase in C3-H. Irradiation of C3-H resulted in a 12% increase in C2-H and a 8.4% increase in the adjacent methyl group (CHCH₃) in the NOE difference spectrum (CDCl₃, 200 MHz).

(2R*,3S*,4S*)-2-Ethoxy-4-(ethoxycarbonyl)-3-methyl-1-(phenylsulfonyl)-1,2,3,4-tetrahydropyridine (39a-exo), Minor adduct 39a-exo: ¹H NMR (CDCl₃, 300 MHz, ppm) 7.83 (m, 2 H, aromatic), 7.52 (m, 3 H, aromatic), 6.57 (d, apparent triplet, 1 H, C6-H, J = 1.3, 7.5 Hz), 5.16 (d, apparent triplet, 1 H, C5-H, J = 1.5, 7.5 Hz), 4.99 (apparent t, 1 H, C2-H, J = 1.2 Hz), 4.13 (m, 2 H, CO₂CH₂CH₃), 3.78 (m, 1 H, OCHHCH₃), 3.70 (m, 1 H, OCHHCH₃), 3.50 (m, 1 H, C4-H), 2.45 (m, 1 H, C3-H), 1.23 (t, 3 H, CO₂CH₂CH₃, J = 7.2 Hz), 1.16 (t, 3 H, OCH₂CH₃, J = 7.1 Hz), 0.30 (d, 3 H, CH₃CH, J = 7.0 Hz); ¹³C NMR (CDCl₃, 50 MHz, ppm) 173.1 (CO₂Et), 140.6 (C aromatic), 133.4 (CH aromatic), 129.5 (CH aromatic), 127.5 (CH aromatic), 122.3 (CH, C6), 103.8 (CH, C5), 86.5 (CH, C2), 63.8 (CO₂CH₂CH₃), 60.9 (OCH₂CH₃), 38.3 (CH, C4), 32.0 (CH, C3), 15.1 (CO₂CH₂CH₃), 14.2 (OCH₂CH₃), 11.1 (CH₃CH); IR (neat) ν_{max} 2978, 2928, 1737, 1701, 1654, 1448, 1363, 1337, 1285, 1242, 1170, 1108, 1092, 1054, 1031, 970, 934, 869, 729 cm⁻¹; EIMS m/e (relative intensity) 308 (14), 292 (base), 280 (23), 141 (29), 138 (16), 110 (25), 94 (91), 86 (41), 84 (22), 82 (27), 78 (11), 77 (90), 67 (10), 58 (30), 57 (20), 55 (13), 51 (28); CIMS (2-methylpropane) m/e (relative intensity) 308 (M + H⁺ – EtOH, base); EIHRMS m/e353.1297 (C17H23NO5S requires 353.1297).

Irradiation of the methyl substituent at C3 $(CHCH_3)$ resulted in a 4.8% increase in the C3-H signal, a 2.5% increase in the C2-H signal and a 4.1% increase in the signal for the ortho hydrogens of the phenyl ring in the NOE difference spectrum. Irradiation of C3-H resulted in a 6% increase in the signal due to the methyl substituent, at 18% increase in the C4-H signal and a 12.1% increase in the C2-H signal in the NOE difference spectrum (CDCl₃, 200 MHz).

 $(2R^*, 3S^*, 4R^*)$ -2-Ethoxy-4-(ethoxycarbonyl)-3-methyl-1-(methylsulfonyl)-1,2,3,4-tetrahydropyridine (39b-endo), Conditions: (*E*)-ethyl 1-propenyl ether (3 equiv), 0.21 mmol scale, 43 h, 21 °C. Examination of crude ¹H NMR (300 MHz) showed a 2.2:1 mixture of endo/exo isomers (isolated 39b 91%, 2.2:1 (endo/exo)). For pure 39b-endo: ¹H NMR (CDCl₃, 300 MHz, ppm) 6.48 (dd, 1 H, C6-H, *J* = 8.5, 1.0 Hz), 5.15 (m, 1 H, C5-H), 4.95 (d, 1 H, C2-H, *J* = 2.2 Hz), 4.14 (m, 2 H, OCH₂CH₃), 3.52 (m, 2 H, OCH₂CH₃), 3.01 (s, 1 H, CH₃SO₂), 2.99 (m, 1 H, C3-H), 2.67 (d, 1 H, C4-H, J = 5.5 Hz), 1.27 (t, 3 H, OCH₂CH₃, J = 7.1 Hz), 1.10 (t, 3 H, OCH₂CH₃, J = 7.0 Hz), 0.99 (d, 3 H, CH₃CH, J = 7.2 Hz); ¹³C NMR (CDCl₃, 50 MHz, ppm) 172.9 (CO₂Et), 122.2 (CH, C6), 103.1 (CH, C5), 85.9 (CH, C2), 63.7 (CO₂CH₂CH₃), 61.1 (OCH₂CH₃), 41.5 (CH, C4), 41.1 (CH₃SO₂), 31.5 (CH, C3), 16.4 (CO₂CH₂CH₃), 15.0 (OCH₂CH₃), 14.2 (CH₃CH); IR (neat) ν_{max} 2978, 1734, 1718, 1701, 1696, 1685, 1654, 1636, 1559, 1507, 1473, 1458, 1340, 1259, 1167, 1082, 1027, 998, 964, 933, 768, 728 cm⁻¹; EIMS *m/e* (relative intensity) 291 (M⁺, 4), 246 (5), 230 (15), 218 (32), 172 (13), 110 (14), 94 (base), 86 (45), 82 (18), 58 (37); CIMS (2-methylpropane) *m/e* (relative intensity) 246 (M + H⁺ – EtOH, base); EIHRMS *m/e* 291.1143 (C₁₂H₂₁NO₅S requires 291.1140).

Minor adduct **39b**-exo could not be separated from **39b**-endo. Diagnostic ¹H NMR signals utilized for the estimation of endo/exo ratio (by integration) for the minor cycloadduct are as follows: 5.24 (dt, 1 H, C5-H, J = 8.5, 1.5 Hz), 3.70 (q, 2 H, OCH₂CH₃, J = 7 Hz), 2.6 (m, 1 H, C3-H), 0.82 (d, 3 H, CH₃CH, J = 7.2 Hz).

(2R*,3R*,4R*)-2-Ethoxy-4-(ethoxycarbonyl-3-phenyl-1-(phenylsulfonvl)-1.2.3.4-tetrahvdropyridine (40-endo). Conditions: (E)-1-ethoxy-2-phenylethylene^{36c} (2.5 equiv), 0.29 mmol scale, 61 h, 21 °C. Examination of crude ¹H NMR (300 MHz) showed a 5:1 mixture of endo/exo isomers (isolated 40 61%, 5:1 (endo/exo)). For pure 40-endo: mp 109-110 °C (EtOAc/hexane); ¹H NMR (CDCI₃, 300 MHz, ppm) 7.4-6.9 (m, 10 H, aromatic), 6.67 (d apparent t, 1 H, C6-H, J = 1.4, 8.4 Hz), 5.45 (ddd, 1 H, C5-H, J = 1.1, 5.0, 8.4 Hz), 5.40 (dd, 1 H, C2-H, J = 1.4, 2.7 Hz), 4.15 (m, 3 H, OCH₂CH₃ and C3-H), 3.67 (m, 2 H, OCH_2CH_3), 3.12 (d, 1 H, C4-H, J = 5.0 Hz), 1.28 (t, 3 H, OCH₂CH₃), 1.13 (t, 3 H, OCH₂CH₃); ¹³C NMR (CDCl₃, 50 MHz, ppm) 172.7 (CO₂Et), 139.9 (C aromatic), 138.8 (C aromatic), 132.6 (CH aromatic), 129.2 (CH aromatic), 128.7 (CH aromatic), 127.7 (CH aromatic), 127.6 (CH aromatic), 126.8 (CH aromatic), 122.3 (CH, C6), 105.6 (CH, C5), 86.1 (CH, C2), 63.5 (OCH₂CH₃), 61.3 (OCH₂CH₃), 44.0 (CH, C4), 39.3 (CH, C3), 14.8 (CH₃CH₂O), 14.2 (CH₃CH₂O); IR (neat) $\nu_{\rm max}$ 2977, 1735, 1701, 1696, 1685, 1654, 1636, 1560, 1448, 1363, 1337, 1257, 1168, 1101, 1075, 1034, 934, 899, 753, 737 cm⁻¹; EIMS m/e (relative intensity) 415 (M⁺, 3), 369 (11), 292 (18), 274 (21), 200 (11), 172 (35), 156 (base), 148 (53), 144 (36), 128 (11), 120 (23), 91 (24), 77 (73), 51 (16); CIMS (2-methylpropane) m/e (relative intensity) 370 $(M + H^+ - EtOH, base)$; EIHRMS m/e 415.1453 (C₂₂H₂₅NO₅ requires 415.1453). Anal. Calcd for C22H25NO5S: C, 63.60; H, 6.06; N, 3.37. Found: C, 63.78; H, 6.42; N, 3.42.

A single-crystal X-ray structure determination confirmed the structure of 40-endo.^{21c}

(2R*,3R*,4S*)-2-Ethoxy-4-(ethoxycarbonyl)-3-phenyl-1-(phenylsulfonyl)-1,2,3,4-tetrahydropyridine (40-exo). Minor adduct 40-exo: ¹H NMR (CDCl₃, 300 MHz, ppm) 7.41-6.85 (m, 10 H, aromatic), 6.63 (ddd, 1 H, C6-H, J = 1.3, 2.7, 8.3 Hz), 5.58 (d apparent t, 1 H, C5-H,J = 1.6, 8.3 Hz), 5.36 (apparent t, 1 H, C2-H, J = 1.3 Hz), 3.93-3.71 (m, 6 H, C3-H, C4-H, OCH₂CH₃, OCH₂CH₃), 1.26 (t, 3 H, CH₃CH₂O, J = 7.0 Hz), 0.82 (t, 3 H, CH_3CH_2O , J = 7.1 Hz); ¹³C NMR (CDCl₃, 50 MHz, ppm) 172.3 (CO2Et), 140.0 (C aromatic), 136.9 (C aromatic), 132.7 (CH aromatic), 129.3 (CH aromatic), 128.6 (CH aromatic), 128.2 (CH aromatic), 127.6 (CH aromatic), 126.9 (CH aromatic), 123.3 (CH, C6), 105.8 (CH, C5), 87.0 (CH, C2), 63.9 (OCH2CH3), 60.76 (OC-H₃CH₃), 43.9 (CH, C4), 37.8 (CH, C3), 15.1 (CH₃CH₂O), 13.8 (C- H_3CH_2O ; 1R (neat) ν_{max} 2977, 1735, 1701, 1697, 1685, 1654, 1560, 1497, 1448, 1363, 1340, 1267, 1168, 1098, 1066, 935, 899, 742, 735 cm⁻¹; EIMS m/e (relative intensity) 415 (M⁺, 5), 370 (27), 369 (27), 342 (15), 296 (14), 292 (44), 274 (24), 200 (18), 172 (30), 157 (10), 156 (99), 148 (base), 144 (13), 141 (14), 120 (53), 91 (17), 77 (29); CIMS (2methylpropane) m/e (relative intensity) 370 (M + H⁺ – EtOH, base); E1HRMS m/e 415.1453 (C22H25NO5S requires 415.1453)

(2*R**,4*R**)-4-(Ethoxycarbonyl)-2-phenyl-1-(phenylsulfonyl)-1,2,3,4tetrahydropyridine (41-endo). Conditions: styrene (2.5 equiv), 0.27 mmol scale, 45.5 h, CH₂Cl₂, 21 °C, 13.3 kbar. Examination of the crude product by ¹H NMR (300 MHz) showed a 11:1 mixture of endo/exo isomers (isolated 41-endo 48%, 11:1 (endo/exo)). For pure 41-endo: mp 120-122 °C (ether/hexane); ¹H NMR (CDCl₃, 300 MHz, ppm) 7.5 (d, 2 H, aromatic, J = 7.5 Hz), 7.44 (m, 3 H, aromatic), 7.13 (m, 6 H, 5 H aromatic, C6-H), 5.25 (dd, 1 H, C5-H, J = 5.7, 9.4 Hz), 5.24 (broad (overlapping) s, 1 H, C2-H), 3.48 (m, 2 H, CO₂CH₂CH₃), 2.86 (t, 1 H, C4-H, J = 5.7 Hz), 2.72 (d, 1 H, C3-H_{eq}, J = 13.7 Hz), 1.80 (ddd, 1 H, C3-H_{ax}, J = 5.7, 6.8, 13.7 Hz), 0.91 (t, 3 H, CO₂CH₂CH₃, J = 7.1Hz); diagnostic ¹H NMR signals utilized for the estimation of the endo/exo ratio (by integration) for the minor cycloadduct 4.10 (q, 2 H, CO₂CH₂CH₃, J = 7 Hz), 2.21 (m, 1 H, C3-H_{eq}), 1.68 (m, 1 H, C3-H_{ax}), 1.20 (t, 3 H, CO₂CH₂CH₃, J = 7 Hz); ¹³C NMR (CDCl₃, 50 MHz, ppm) 171.9 (CO₂Et), 139.5 (C aromatic), 138.3 (C aromatic), 133.3 (CH aromatic), 129.4 (CH aromatic), 128.3 (CH aromatic), 127.6 (CH 105.9 (CH, C5), 60.9 (CH, C2), 55.3 (CO₂CH₂CH₃), 34.8 (CH, C4), 29.8 (CH₂, C3), 13.7 (CO₂CH₂CH₃); IR (neat) ν_{max} 2905, 2724, 2672, 1460, 1378, 1314, 1188, 1172, 1160, 1104, 1076, 1028, 874, 812, 744, 722, 702 cm⁻¹; EIMS *m/e* (relative intensity) 371 (M⁺, 27), 299 (14), 298 (99), 230 (8), 157 (33), 156 (base), 141 (12), 129 (8), 104 (15), 80 (29), 78 (10), 77 (58), 51 (10); CIMS (2-methylpropane) *m/e* (relative intensity) 372 (M + H⁺, base); EIHRMS *m/e* 371.1191 (C₂₀H₂₁NO₄S requires 371.1191). Anal. Calcd for C₂₀H₂₁NO₄S: C, 64.67; H, 5.70; N, 3.77. Found: C, 64.35; H, 5.64; N, 3.64.

(2R*.3R*.4R*)-2-Ethoxy-4-(ethoxycarbonyl)-3-methyl-1-(phenylsulfonyl)-1,2,3,4-tetrahydropyrldine (42a-endo). Conditions: (Z)-ethyl-1-propenyl ether (3.8 equiv), 0.21 mmol scale, 69 h, 21 °C. Examination of the crude product by ¹H NMR (300 MHz) showed a 25:1 mixture of endo/exo isomers (isolated 42a-endo 48%, 22.7:1 (endo/exo)). For pure 42a-endo: ¹H NMR (CDCl₃, 300 MHz, ppm) 7.77 (d, 2 H, aromatic, J = 7.3 Hz), 7.56 (m, 3 H, aromatic), 6.62 (d, 1 H, C6-H, J = 8.1 Hz), 5.19 (dd, 1 H, C5-H, J = 5.5, 8.1 Hz), 4.96 (broad s, 1 H, C2-H), 4.12 (m, 2 H, CO₂CH₂CH₃), 3.80 (m, OCHHCH₃), 3.51 (m, 1 H, OCHHCH₁), 2.72 (apparent triplet, 1 H, C4-H, J = 5.5 Hz), 1.44 (m, 1 H, C3-H), 1.23 (t, 3 H, $CO_2CH_2CH_3$, J = 7.2 Hz), 1.20 (d, 3 H, $CH_3CH, J = 7.1 \text{ Hz}$, 1.09 (t, 3 H, $OCH_2CH_3, J = 7.0 \text{ Hz}$); ¹³C NMR (CDCl₃, 50 MHz, ppm) 171.6 (CO₂Et), 139.8 (C aromatic), 133.3 (CH aromatic), 129.7 (CH aromatic), 127.0 (CH aromatic), 123.1 (CH, C6), 109.1 (CH, C5), 85.7 (CH, C2), 64.0 (CO₂CH₂CH₃), 60.6 (OCH₂CH₃), 39.5 (CH, C4), 35.3 (CH, C3), 15.5 (CO₂CH₂CH₃), 14.6 (OCH₂CH₃), 14.2 (CHCH₃); IR (neat) ν_{max} 2977, 2928, 1724, 1701, 1654, 1448, 1350, 1311, 1233, 1173, 1079, 1017, 981, 756, 725 cm⁻¹; EIMS *m/e* (relative intensity) 353 (M⁺, 6), 308 (31), 293 (18), 292 (base), 280 (31), 141 (19), 138 (14), 110 (8), 94 (96), 86 (23), 82 (20), 77 (57), 58 (24), 57 (12); CIMS (2-methylpropane) m/e (relative intensity) 308 (M + H⁺ EtOH, base); EIHRMS m/e 353.1297 (C17H23NO5S requires 353.1297)

Irradiation of C4-H resulted in a 13% increase in the C3-H signal and an 11% increase in the C5-H signal in the NOE difference spectrum (CDCl₃, 200 MHz).

Base-Catalyzed Epimerization of (2R*,3R*,4R*)-2-Ethoxy-4-(ethoxycarbonyl)-3-methyl-1-(phenylsulfonyl)-1,2,3,4-tetrahydropyridine (42a-endo): Preparation of (2R*,3R*,4S*)-2-Ethoxy-4-(ethoxycarbonyl)-3-methyl-1-(phenylsulfonyl)-1,2,3,4-tetrahydropyridine. A solution of 42a-endo (4.1 mg, 0.12 mmol) in dry benzene (0.6 mL) was treated with a solution of DBU (2 M in benzene, 6 μ L, 1 equiv), and the mixture was stirred at 21 °C for 2 h. The resulting reaction mixture was diluted with ether (8 mL) and washed with 2% aqueous hydrochloric acid $(2 \times 5 \text{ mL})$. The organic phase was dried (MgSO₄) and concentrated in vacuo. ¹H NMR (300 Mhz) of the crude product revealed a mixture of the starting material and 42a-exo (1:12): ¹H NMR (CDCl₃, 300 MHz, ppm) 7.70 (d, 2 H, aromatic, J = 7.3 Hz), 7.52 (m, 3 H, aromatic), 6.57 (dd, 1 H, C6-H, J = 1.3, 8 Hz), 5.04 (dd, 1 H, C5-H, J = 2.1, 8 Hz), 4.95 (broad s, 1 H, C2-H), 4.09 (q, 2 H, $CO_2CH_2CH_3$, J = 7.1 Hz), 3.84 (m, 1 H, OCHHCH₃), 3.59 (m, 1 H, OCHHCH₃), 2.99 (dt, 1 H, C4-H, J = 2.1, 11.4 Hz), 1.39 (m, 1 H, C3-H), 1.21 (t, 3 H, $CO_2CH_2CH_3$, J = 7.1 Hz), 1.17 (t, 3 H, OCH_2CH_3 , J = 7.0 Hz), 0.94 $(d, 3 H, CH_3CH, J = 6.7 Hz)$

(2R*,3R*,4R*)-2-Ethoxy-4-(ethoxycarbonyl)-3-methyl-1-(methylsulfonvl)-1.2.3.4-tetrahydropyridine (42b-endo). Conditions: (Z)ethyl-1-propenyl ether (4 equiv), 0.16 mmol scale, 66 h, 21 °C. Examination of crude 'H NMR (300 MHz) showed a single diastereomer (isolated 42b 36% > 20:1 (endo/exo)). For pure 42b-endo: ¹H NMR $(CDCl_3, 300 \text{ MHz}, \text{ppm}) 6.52 (d, 1 \text{ H}, C6-\text{H}, J = 8.50 \text{ Hz}), 5.19 (dd, J)$ 1 H, C5-H, J = 8.6, 5.30 Hz, 5.02 (broad s, 1 H, C2-H), 4.11 (m, 2 H, CO₂CH₂CH₃), 3.79 (m, 1 H, OCHHCH₃), 3.54 (m, 1 H, OCHHCH₃), 2.99 (m, 1 H, C4-H), 2.95 (s, 3 H, CH₃SO₂), 2.18 (m, 1 H, C3-H), 1.34 (d, 3 H, CH₃CH, J = 7.24 Hz), 1.26 (t, 3 H, OCH₂CH₃, J = 7.05 Hz, 1.13 (t, 3 H, OCH₂CH₃, J = 7.1 Hz); ¹³C NMR (CDCl₃, 50 MHz, ppm) 171.9 (CO₂Et), 123.3 (CH, C6), 107.3 (CH, C5), 86.2 (CH, C2), 65.5 (CO₂CH₂CH₃), 60.8 (OCH₂CH₃), 40.9 (CH, C4), 39.9 (CH₃SO₂), 29.9 (CH, C3), 15.2 (CO₂CH₂CH₃), 15.1 (OCH₂CH₃), 14.4 (CH₃CH); 1R (neat) v_{max} 2977, 2929, 1718, 1654, 1637, 1559, 1541, 1508, 1458, 1374, 1340, 1235, 1169, 1121, 1068, 1030, 961, 922, 765, 734 cm⁻¹; E1MS m/e (relative intensity) 291 (M⁺, 3), 246 (10), 230 (46), 218 (33), 110 (15), 95 (12), 94 (base), 86 (57), 82 (18), 58 (43), 57 (23), 55 (16); C1MS (2-methylpropane) m/e (relative intensity) 246 (M + H⁺ EtOH, base); E1HRMS m/e 291.1142 (C₁₂H₂₁NO₅S requires 291.1140)

 $(2S^*, 3R^*, 4S^*)$ -2-Ethoxy-4- (ethoxycarbonyl)-3-phenyl-1- (phenyl-sulfonyl)-1,2,3,4-tetrahydropyridine (43-endo). Conditions: (Z)-1-eth-oxy-2-phenylethylene^{36d} (2.5 equiv), 0.24 mmol scale, 49.5 h, CH₂Cl₂, 21 °C, 13.3 kbar. Examination of the crude product by ¹H NMR (300 MHz) showed a 2.2:1 mixture of endo/exo isomers, (isolated 43 42%, 2.2:1 (endo/exo)). For pure 43-endo: mp 91–93 °C (ether/hexane); ¹H

NMR (CDCl₃, 300 MHz, ppm) 7.73 (m, 2 H, aromatic), 7.57 (m, 1 H, aromatic), 7.50 (m, 2 H, aromatic), 7.28 (m, 3 H, aromatic), 7.17 (m, 2 H, aromatic), 6.70 (d apparent t, 1 H, C6-H, J = 1.4, 8.2 Hz), 5.48 (t, 1 H, C2-H, J = 1.1 Hz), 5.37 (dd, 1 H, C5-H, J = 5.6, 8.2 Hz), 3.94(m, 1 H, OCHHCH₃), 3.87 (m, 2 H, OCH₂CH₃), 3.69 (m, 1 H, $OCHHCH_3$), 3.07 (m, 1 H, C4-H), 2.50 (d, 1 H, C3-H, J = 5.6 Hz), 1.23 (t, 3 H, CH_3CH_2O , J = 7.0 Hz), 0.93 (t, 3 H, CH_3CH_2O , J = 7.1Hz); ¹³C NMR (CDCl₃, 50 MHz, ppm) 170.9 (CO₂Et), 139.4 (C aromatic), 133.5 (C aromatic), 129.8 (CH aromatic), 128.8 (CH aromatic), 128.3 (CH aromatic), 127.3 (CH aromatic), 127.1 (CH aromatic), 123.0 (CH, C6), 110.1 (CH, C5), 84.0 (CH, C2), 63.6 (CH₃CH₂O), 60.4 (CH₃CH₂O), 45.9 (CH, C4), 41.3 (CH, C3), 14.8 (CH₃CH₂O), 13.7 (CH_3CH_2O) ; IR (neat) ν_{max} 3064, 2978, 2928, 1734, 1718, 1701, 1696, 1685, 1670, 1654, 1647, 1636, 1559, 1540, 1507, 1496, 1473, 1457, 1448, 1395, 1340, 1261, 1171, 1136, 1096, 1056, 927, 725, 689 cm⁻¹; EIMS m/e (relative intensity) 369 (15), 292 (35), 274 (18), 200 (11), 172 (28), 151 (15), 156 (base), 148 (75), 144 (25), 141 (17), 129 (11), 128 (14), 127 (10), 120 (40), 115 (13), 105 (29), 91 (43), 78 (12), 77 (84), 51 (15); CIMS (2-methylpropane) m/e (relative intensity) 370 (M + H⁺ -EtOH, base); EIHRMS m/e 415.1445 (C22H25NO5S requires 415.1453). Anal. Calcd for C22H25NO5S: C, 63.60; H, 6.06; N, 3.37. Found: C, 63.22; H, 5.94; N, 3.62.

Irradiation of C4-H resulted in a 6.5% increase in the signal for the ortho hydrogens of the phenyl substituent at C3, a 13.3% increase in the signal for C5-H, and a 10.7% increase in the signal for C3-H. Irradiation of C3-H resulted in a 4.1% increase in the signal for the ortho hydrogens of the phenylsulfonyl substituent at N1, a 16.4% increase in the ortho hydrogens of the phenyl substituent at C3, a 8.4% increase in the C2-H signal, and a 14.4% increase in the C4-H signal in the NOE difference spectrum (CDCl₃, 500 MHz).

(2R*,3S*,4S*)-2-Ethoxy-4-(ethoxycarbonyl)-3-phenyl-1-(phenylsulfonyl)-1,2,3,4-tetrahydropyridine (43-exo), Minor product 43-exo: ¹H NMR (CDCl₃, 300 MHz, ppm) 7.34-6.89 (m, 10 H, aromatic), 6.59 (d, apparent t, 1 H, C6-H, J = 1.5, 8.5 Hz), 5.39 (ddd, 1 H, C5-H, J = 1.2, 5.1, 8.5 Hz), 5.33 (dd, 1 H, C2-H, J = 1.5, 2.8 Hz), 4.09 (m, 3 H, OCH2CH3 and C3-H), 3.61 (m, 2 H, OCH2CH3), 3.05 (d, 1 H, C4-H, J = 5.1 Hz), 1.21 (t, 3 H, OCH₂CH₃), 1.06 (t, 3 H, OCH₂CH₃); ¹³C NMR (CDCl₃, 50 MHz, ppm) 172.7 (CO₂Et), 140.0 (C aromatic), 138.8 (C aromatic), 132.6 (CH aromatic), 129.2 (CH aromatic), 128.9 (CH aromatic), 128.5 (CH aromatic), 127.7 (CH aromatic), 127.6 (CH aromatic), 126.8 (CH aromatic), 123.3 (CH, C6), 105.6 (CH, C5), 86.1 (CH, C2), 63.6 (OCH₂CH₃), 61.3 (OCH₂CH₃), 44.1 (CH, C4), 39.3 (CH, C3), 14.9 (OCH₂CH₃), 14.2 (OCH₂CH₃); IR (neat) ν_{max} 2977, 1735, 1701, 1697, 1685, 1654, 1448, 1363, 1340, 1260, 1170, 1101, 933, 800, 754, 737 cm⁻¹; E1MS m/e (relative intensity) 415 (M⁺, 3), 369 (15), 342 (32), 292 (19), 274 (41), 200 (10), 172 (28), 156 (84), 148 (47), 144 (27), 141 (15), 128 (11), 120 (27), 105 (56), 91 (30), 78 (11), 77 (base), 51 (19); CIMS (2-methylpropane) m/e (relative intensity) 370 (M + H⁺ EtOH, base); E1HRMS m/e 415.1453 (C22H25NO5S requires 415.1453)

Irradiation of C4-H resulted in a 17.5% signal increase in the ortho hydrogens of the phenyl substituent at C3, a 10% increase in the C5-H signal, and a 7.3% increase in the C3-H signal in the NOE difference spectrum (CDCl₃, 500 MHz).

(2R*,4R*)-4-(Ethoxycarbonyl)-3-methylidene-2-methoxy-1-(phenylsulfonyl)-1,2,3,4-tetrahydropyridine (44). Conditions: 1-methoxy-1,2propadiene^{36e} (5 equiv), 0.16 mmol scale, 82 h, 0 °C; examination of the crude product by ¹H NMR (300 MHz) revealed no trace of the exo cycloadduct, 44: 56%; ¹H NMR (CDCl₃, 300 MHz, ppm) 7.78 (d, 2 H, J = 7.5 Hz, aromatic), 7.52 (m, 3 H, aromatic), 6.59 (d, 1 H, C6-H, J = 8.1 Hz), 5.30 (s, 1 H, C2-H), 5.26 (dd, 1 H, C5-H, J = 3.4, 8.1 Hz), 5.10 (d, 2 H, C=CH₂, J = 9.2 Hz), 4.13 (m, 2 H, CO₂CH₂CH₃), 3.45 (d, 1 H, C4-H, J = 3.4 Hz), 3.32 (s, 3 H, OCH₃), 1.21 (t, 3 H, CO₂C- H_2CH_3 , J = 7.1 Hz); ¹³C NMR (CDCl₃, 50 MHz, ppm) 170.6 (CO₂Et), 139.9 (C aromatic), 136.3 (C, C3), 133.5 (CH aromatic), 129.5 (CH aromatic), 127.5 (CH aromatic), 123.4 (CH, C6), 118.5 (C=CH₂), 107.3 (CH, C5), 87.4 (CH, C2), 61.7 (CO₂CH₂CH₃), 55.2 (OCH₃), 43.5 (CH, C4), 14.2 (CO₂CH₂CH₃); 1R (neat) ν_{max} 3278, 3070, 2936, 1730, 1654, 1448, 1392, 1362, 1171, 1129, 1098, 1076, 1023, 998, 942, 907, 874, 757, 727, 689 cm⁻¹; E1MS m/e (relative intensity) 337 (M⁺, 3), 306 (21), 265 (11), 264 (85), 150 (19), 141 (20), 134 (13), 123 (12), 122 (22), 119 (14), 108 (29), 94 (11), 93 (17), 92 (57), 78 (21), 77 (base), 74 (13), 65 (25), 59 (47), 57 (10), 53 (15), 51 (43), 50 (18); CIMS (2-methylpropane) m/e (relative intensity) 338 (M + H⁺, 10), 306 (M + H⁺ - ĆH₃OH, base); ÈIHRMS *m/e* 337.0986 (C₁₆H₁₉NO₅S requires 337 0984)

 $(2R^*, 3R^*, 4R^*)$ -3-Acetoxy-2-(benzyloxy)-4-(ethoxycarbonyl)-1-(phenylsulfouyl)-1,2,3,4-tetrahydropyridine (45-endo). Conditions: (Z)-1-acetoxy-2-(benzyloxy)ethylene^{36f} (110 mg, 0.57 mmol, 3.1 equiv) 13.3 kbar, 49.5 h, 21 °C. Examination of the crude material by ¹H

NMR (300 MHz) showed a single diastereomer. Isolated 45-endo (35.9 mg, 83.9 mg theoretical, 42%), mp 90-92 °C (white needles, ether/ hexane); ¹H NMR (CDCl₃, 300 MHz, ppm) 7.80 (d, 2 H, aromatic, J = 7.4 Hz), 7.59 (m, 1 H, aromatic), 7.51 (m, 2 H, aromatic), 7.36-7.28 (m, 5 H, aromatic), 6.64 (d, 1 H, C6-H, J = 8.2 Hz), 5.32 (d, 1 H, C2-H, J = 1.6 Hz), 5.14 (dd, 1 H, C5-H, J = 5.4, 8.2 Hz), 4.81 (d, 1 H, OCHHPh, J = 12 Hz), 4.68 (d, 1 H, OCHHPh, J = 12 Hz), 4.31 $(dd, 1 H, C3-H, J = 2.3, 7.3 Hz), 4.00 (m, 1 H, OCHHCH_3), 3.85 (m, 1)$ 1 H, OCHHCH₃), 3.43 (m, 1 H, C4-H), 2.07 (s, 3 H, COCH₃), 1.08 (t, 3 H, CH₃CH₂O); diagnostic ¹H NMR signals utilized for the determination of endo/exo ratio (by integration) for the minor cycloadduct were 6.82 (dt, 1 H, C6-H, J = 8.4, 1.0 Hz), 2.92 (d, 1 H, C4-H, J = 7.0Hz); ¹³C NMR (CDCl₃, 50 MHz, ppm) 170.9 (CO₂Et), 169.5 (OCOC-H₃), 139.4 (C aromatic), 137.8 (C aromatic), 133.9 (CH aromatic), 130.0 (CH aromatic), 128.6 (CH aromatic), 128.3 (CH aromatic), 128.1 (CH aromatic), 127.2 (CH aromatic), 123.2 (CH, C6), 106.1 (CH, C5), 82.1 (CH, C2), 70.8 (PhCH₂O), 70.3 (CH, C3), 61.2 (OCH₂CH₃), 37.5 (CH, C4), 21.1 (CH₃CO₂), 14.1 (CH₃CH₂O); IR (neat) ν_{max} 3065, 2937, 1734, 1701, 1696, 1685, 1654, 1636, 1559, 1507, 1497, 1473, 1448, 1363, 1312, 1231, 1172, 1102, 1066, 908, 731 cm⁻¹; EIMS m/e (relative intensity) 292 (17), 220 (3), 141 (4), 91 (base), 77 (23), 65 (5), 51 (5); CIMS (2-methylpropane) m/e (relative intensity) 352 (M + H⁺ -HOCH₂Ph, base); EIHRMS m/e 459.1352 (C₂₃H₂₅NO₇S requires 459.1352).

A single-crystal X-ray structure determination confirmed the structure of **45**-endo.^{21c}

(2R*,3S*,4R*)-3-Acetoxy-2-(benzyloxy)-4-(ethoxycarbonyl)-1-(phenylsulfonyl)-1,2,3,4-tetrahydropyridine (46-endo). Conditions: (E)-1-acetoxy-2-(benzyloxy)ethylene^{36f} (3 equiv), 0.09 mmol scale, 135 h, 21 °C. Examination of the crude product by ¹H NMR (300 MHz) showed a 2.4:1 mixture of endo/exo isomers (isolated 46 71%, 2.4:1 (endo/exo)). For pure 46-endo: ¹H NMR (CDCl₃, 300 MHz, ppm) 7.87 (d, 2 H, aromatic), 7.49 (m, 3 H, aromatic), 7.19 (m, 5 H, aromatic), 6.77 (d, 1 H, C6-H, J = 8.3 Hz), 5.64 (t, 1 H, C3-H, J = 1.3Hz), 5.34 (d, 1 H, C2-H, J = 2.6 Hz), 5.19 (m, 1 H, C5-H), 4.66 (d, 1 H, OCHHPh, J = 11.7 Hz), 4.54 (d, 1 H, OCHHPh, J = 11.7 Hz), $3.85 \text{ (m, 2 H, CO_2CH_2CH_3)}, 2.91 \text{ (d, 1 H, C4-H, } J = 4.7 \text{ Hz}), 1.33 \text{ (s,}$ 3 H, OCOCH₃), 0.99 (t, 3 H, CO₂CH₂CH₃, J = 7.1 Hz); ¹³C NMR (CDCl₃, 50 MHz, ppm) 170.1 (CO), 168.4 (CO), 140.6 (C aromatic), 137.5 (C aromatic), 133.3 (CH aromatic), 129.7 (CH aromatic), 128.6 (CH aromatic), 128.1 (CH aromatic), 127.40 (CH aromatic), 126.8 (CH aromatic), 122.6 (CH, C6), 103.8 (CH, C5), 81.1 (CH, C2), 70.4 (OCH₂Ph), 67.4 (CH, C3), 61.5 (OCH₂CH₃), 40.6 (CH, C4), 20.4 (OCOCH₃), 13.9 (OCH₂CH₃); IR (neat) ν_{max} 2927, 1741, 1701, 1697, 1685, 1654, 1447, 1369, 1345, 1229, 1172, 1072, 1030, 912, 741 cm⁻¹; EIMS m/e (relative intensity) 292 (57), 157 (15), 141 (26), 93 (16), 91 (base), 78 (10), 77 (79), 51 (31); CIMS (2-methylpropane) m/e (relative intensity) 352 (M + H⁺ – PhCH₂OH, base); CIHRMS m/e 460.1412 (C₂₃H₂₅NO₇S requires 460.1430)

(2*R**,3*S**,4*S**)-3-Acetoxy-2-(benzyloxy)-4-(ethoxycarbonyl)-1-(phenylsulfonyl)-1,2,3,4-tetrahydropyrldine (46-exo). Minor adduct 46exo: ¹H NMR (CDCl₃, 300 MHz, ppm) 7.81 (d, 2 H, aromatic, 7.3 Hz), 7.52 (m, 3 H, aromatic), 7.33 (m, 5 H, aromatic), 6.83 (d, 1 H, C6-H, J = 7.9 Hz), 5.37-5.31 (m, 3 H, C2-H, C3-H, C5-H), 4.92 (d, 1 H, OCHHPh, J = 11.7 Hz), 4.75 (d, 1 H, OCHHPh, J = 11.7 Hz), 4.12 (m, 2 H, CO₂CH₂CH₃), 3.62 (t, 1 H, C4-H, J = 2.6 Hz), 1.23 (s, 3 H, OCOCH₃), 1.18 (t, 3 H, CO₂CH₂CH₃); ¹³C NMR (CDCl₃, 50 MHz, ppm) 170.3 (CO), 170.2 (CO), 140.5 (C aromatic), 137.6 (C aromatic), 133.4 (CH aromatic), 129.8 (CH aromatic), 128.8 (CH aromatic), 128.3 (CH aromatic), 127.5 (CH aromatic), 122.9 (CH, C6), 103.3 (CH, C5), 81.3 (CH, C2), 70.5 (OCH₂Ph), 65.7 (CH, C3), 61.4 (OCH₂CH₃), 38.6 (CH, C4), 20.1 (O₂CCH₃), 14.2 (CO₂CH₂CH₃); IR (neat) ν_{max} 2926, 1735, 1701, 1697, 1685, 1676, 1654, 1649, 1618, 1577, 1561, 1555, 1497, 1449, 1370, 1234, 1170, 1038, 956, 915 cm⁻¹; EIMS *m/e* (relative intensity) 293 (2), 292 (16), 220 (2), 141 (7), 105 (2), 96 (2), 92 (7), 91 (base), 79 (2), 78 (4), 77 (28); CIMS (2-methylpropane) *m/e* (relative intensity) 460 (M + H⁺, 16), 352 (M + H⁺ - PhCH₂OH, base); EIHRMS *m/e* 459.1359 (C₂₃H₂₅NO₇S requires 459.1352).

(2*R**,4*R**)-4-(Ethoxycarbonyl)-2-(4'-methoxyphenyl)-1-(phenylsulfonyl)-1,2,3,4-tetrahydropyridine (47-endo). Conditions: 4-vinyl anisole (5 equiv), 0.27 mmol scale, 46 h, 21 °C. Examination of crude product by ¹H NMR (300 MHz) showed a 33:1 mixture of endo/exo isomers (isolated 47 63%, 33:1 (endo/exo)). For pure 47-endo: ¹H NMR (CDCl₃, 300 MHz, ppm) 7.72 (m, 2 H, aromatic), 7.53 (m, 1 H, aromatic), 7.44 (m, 2 H, aromatic), 7.04 (m, 3 H, 2 H aromatic and C6-H), 6.70 (m, 2 H, aromatic), 5.25 (ddd, 1 H, C5-H, J = 1.2, 5.5, 8.7Hz), 5.18 (apparent triplet, 1 H, C2-H, J = 3.7 Hz), 3.73 (s, 3 H, OCH₃), 3.57 (m, 2 H, CO₂CH₂CH₃, J = 7.1 Hz), 2.86 (m, 1 H, C4-H), C.67 (m, 1 H, C3-H_{eq}), 1.28 (ddd, 1 H, C3-H_{ax}, J = 2.2, 7, 14 Hz), 0.94 (t, 3 H, CO₂CH₂CH₃, J = 7.1 Hz); ¹³C NMR (CDCl₃, 50 MHz, ppm) 171.9 (CO₂Et), 158.9 (C aromatic), 139.3 (C aromatic), 132.9 (CH aromatic), 130.0 (C aromatic), 129.3 (CH aromatic), 129.2 (CH aromatic), 127.8 (CH aromatic), 127.0 (CH aromatic), 126.5 (CH aromatic), 125.3 (CH aromatic), 113.4 (CH, C6), 105.6 (CH, C5), 60.6 (CO₂CH₂CH₃), 55.2 (OCH₃), 54.7 (CH, C2), 34.5 (CH, C4), 29.7 (CH₂, C3), 13.5 (CO₂CH₂CH₃); IR (neat) ν_{max} 2927, 1725, 1654, 1612, 1513, 1446, 1339, 1249, 1169, 1098, 1035, 910, 830, 747, 725 cm⁻¹; EIMS *m/e* (relative intensity) 401 (M⁺, 24), 328 (22), 260 (73), 259 (11), 187 (24), 186 (66), 157 (38), 141 (21), 134 (91), 94 (12), 93 (38), 84 (11), 80 (16), 77 (base), 51 (39), 49 (22); CIMS (2-methylpropane) *m/e* (relative intensity) 402 (M + H⁺, base); EIHRMS *m/e* 401.1297 (C₂₁H₂₃NO₅S requires 401.1297). Anal. Calcd for C₂₁H₂₃NO₅S: C, 62.83; H, 5.77; N, 3.49. Found: C, 62.82; H, 5.75; N, 3.67.

Irradiation of C3-H_{ax} resulted in a 23% increase in the C3-H_{eq} signal, a 17% increase in the C4-H signal, a 6% increase in the C2-H signal, and a 4% increase in the signal for the ortho hydrogens of the phenylsulfonamide in the NOE difference spectrum. Irradiation of C3-H_{eq} resulted in a 23% increase in the C3-H_{ax} signal, a 9% increase in the C2-H signal, and a 18% increase in the signal for the ortho hydrogens of the *p*-methoxyphenyl substituent at C2 in the NOE difference spectrum (CDCl₃, 200 MHz).

Diagnostic ¹H NMR signals utilized for the determination of the endo/exo ratio (by integration) for the minor cycloadduct are as follows: 3.78 (s, 3 H, CH₃O), 2.18 (ddd, 1 H, C3-H_{eq}, J = 12.5, 2.4, 2.1 Hz), 1.63 (dt, 1 H, C3-H_{ax}, J = 12.5, 4.3 Hz). This was further established to be the exo diastereomer by deliberate epimerization as detailed in the following text.

Base-Catalyzed Epimerization of (2R*,4R*)-4-(Ethoxycarbonyl)-2-(4'-methoxyphenyl)-1-(phenylsulfonyl)-1,2,3,4-tetrahydropyridine (47endo): Preparation of (2R*,4S*)-4-(Ethoxycarbonyl)-2-(4'-methoxyphenyl)-1-(phenylsulfonyl)-1,2,3,4-tetrahydropyridine. Following the procedure for epimerization of 37b, 47-endo afforded a 5.5:1 ratio of C4 epimers with the (2R*,4S*) epimer as the major product: ¹H NMR (CDCl₃, 300 MHz, ppm) 7.70 (d, 2 H, aromatic, J = 7.5 Hz), 7.50 (m, 3 H, aromatic), 7.08 (d, 2 H, aromatic, J = 8.6 Hz), 6.98 (dd, 1 H, C6-H, J = 2.1, 8.4 Hz), 6.78 (d, 2 H, aromatic, J = 8.6 Hz), 5.18 (m, 2 H, C5-H and C2-H), 4.07 (q, 2 H, OCH₂CH₃, J = 7.1 Hz), 3.78 (s, 3 H, CH₃O), 2.72 (dt, 1 H, C4-H, J = 12, 2.4 Hz), 2.18 (ddd, 1 H, C3-H_{eq}, J = 12.5, 2.4, 2.1 Hz), 1.63 (dt, 1 H, C3-H_{ax}, C3, J = 12.5, 4.3 Hz), 1.08 (t, 3 H, CH₃CH₂O, J = 7.1 Hz).

(2R*,3R*,4S*)-4-(Ethoxycarbonyl)-2-(4'-methoxyphenyl)-3methyl-1-(phenylsulfonyl)-1,2,3,4-tetrahydropyridine (48-endo). Conditions: (E)-4-propenyl anisole (2 equiv), 0.22 mmol scale, 53 h, benzene, 80 °C. Examination of crude ¹H NMR (300 MHz) showed a 4.5:1 (endo/exo) mixture of isomers (isolated 48 44%, 4:1 (endo/exo)). For pure 48-endo: mp 139-140 °C (EtOAc/hexane); ¹H NMR (CDCl₃, 300 MHz, ppm) 7.72 (m, 2 H, aromatic), 7.52 (m, 1 H, aromatic), 7.41 (m, 2 H, aromatic), 7.04 (d, 1 H, C6-H, J = 8.5 Hz), 6.75 (m, 2 H, aromatic), 6.65 (m, 2 H, aromatic), 5.06 (ddd, 1 H, C5-H, J = 1.35, 5.4, 8.5 Hz), 4.91 (broad s, 1 H, C2-H), 3.72 (s, 3 H, OCH₃), 3.49 (m, 2 H, OCH_2CH_3 , 2.96 (m, 1 H, C3-H), 2.53 (d, 1 H, C4-H, J = 5.5 Hz), 0.93 $(t, 3 H, OCH_2CH_3, J = 7.09 Hz), 0.79 (d, 3 H, CH_3CH, J = 7.12 Hz);$ ¹³C NMR (CDCl₃, 50 MHz, ppm) 171.9 (CO₂Et), 159.1 (C aromatic), 140.1 (C aromatic), 133.2 (CH aromatic), 130.7 (C aromatic), 129.3 (CH aromatic), 127.9 (CH aromatic), 124.4 (CH aromatic), 113.6 (CH, C6), 102.3 (CH, C5), 60.8 (CH₃CH₂O and CH, C2), 55.4 (OCH₃), 41.8 (CH, C4), 35.2 (CH, C3), 20.0 (CH₃CH), 13.8 (CH₃CH₂O); IR (KBr) ν_{max} 2970, 2361, 1725, 1701, 1697, 1685, 1654, 1613, 1513, 1448, 1405, 1363, 1249, 1170, 1089, 1068, 1036, 1005, 916, 853, 729 cm⁻¹; EIMS m/e (relative intensity) 415 (M⁺, 12), 342 (11), 274 (32), 201 (13), 200 (33), 148 (base), 137 (17), 135 (31), 121 (13), 94 (12), 77 (37); CIMS (2-methylpropane) m/e (relative intensity) 416 (M + H⁺, base); E1HRMS m/e 415.1453 (C22H25NO5S requires 415.1453). Anal. Calcd for C₂₂H₂₅NO₅S: C, 63.60; H, 6.06; N, 3.37. Found: C, 63.81; H, 6.33; N. 3.41.

A single-crystal X-ray structure determination confirmed the structure of **48**-endo.^{21c}

(2R*,3R*,4R*)-4-(Ethoxycarbonyl)-2-(4'-methoxyphenyl)-3methyl-1-(phenylsulfonyl)-1,2,3,4-tetrahydropyridine (48-exo). Minor product 48-exo: ¹H NMR (CDCl₃, 300 MHz, ppm) 7.72 (m, 2 H, aromatic), 7.52 (m, 1 H, aromatic), 7.41 (m, 2 H, aromatic), 7.04 (m, 2 H, aromatic), 6.98 (dd, 1 H, C6-H, J = 2.2, 8.5 Hz), 6.77 (m, 2 H, aromatic), 5.12 (d apparent t, 1 H, C5-H, J = 1.3, 8.5 Hz), 4.86 (d, 1 H, C2-H, J = 1.8 Hz), 4.08 (m, 2 H, OCH₂CH₃), 3.77 (s, 3 H, OCH₃), 2.85 (m, 1 H, C4-H), 2.42 (m, 1 H, C3-H), 1.18 (t, 3 H, OCH₂CH₃, J = 7.1 Hz), 0.57 (d, 3 H, CH₃CH, J = 6.8 Hz); ¹³C NMR (CDCl₃, 50 MHz, ppm) 172.9 (CO₂Et), 159.4 (C aromatic), 140.0 (C aromatic), 133.2 (CH aromatic), 132.9 (C aromatic), 129.4 (CH aromatic), 127.3 (CH aromatic), 127.1 (CH aromatic), 124.7 (CH aromatic), 114.3 (CH, C6), 101.6 (CH, C5), 62.5 (CH, C2), 61.0 (OCH₂CH₃), 55.5 (OCH₃), 38.1 (CH, C4), 34.5 (CH, C3), 14.3 (CH₃CH), 14.2 (CH₃CH₂O); IR (neat) ν_{max} 2921, 2361, 2345, 1830, 1773, 1756, 1749, 1740, 1730, 1718, 1707, 1701, 1696, 1685, 1676, 1670, 1663, 1654, 1647, 1636, 1628, 1047, 1025, 995, 940 cm⁻¹; EIMS m/e (relative intensity) 415 (M⁺, 3), 292 (8), 274 (4), 201 (6), 200 (17), 186 (6), 148 (base), 147 (10), 121 (9), 94 (9), 77 (46); CIMS (2-methylpropane) m/e (relative intensity) 416 $(M + H^+, base)$; EIHRMS m/e 415.1459 $(C_{22}H_{25}NO_5S$ requires 415.1453)

(2R*,4S*)-4-(Ethoxycarbonyl)-2-n-hexyl-1-(phenylsulfonyl)-1,2,3,4tetrahydropyridine (49). Conditions: 1-octene (3 equiv) 0.21 mmol scale, 6 d, CH₂Cl₂, 13.3 kbar. Examination of crude ¹H NMR (300 MHz) showed a 4.5:1 (endo/exo) mixture of isomers (isolated 49: 18% 5:1 (endo/exo)). 49-endo: ¹H NMR (CDCl₃, 300 MHz, ppm) 7.78 (m, 2 H, aromatic), 7.53 (m, 3 H, aromatic), 6.70 (dd, 1 H, C6-H, J = 8.2, 1.5 Hz), 5.27 (ddd, 1 H, C5-H, J = 1, 4.5, 8.2 Hz), 4.12 (m, 2 H, CO₂CH₂CH₃), 2.93 (m, 1 H, C2-H), 2.77 (m, 1 H, C4-H), 2.27 (d, 1 H, C3- H_{eq} , J = 13.9 Hz), 1.25 (m, 14 H, (C H_2)₅C H_3 , and C3- H_{ax}), 0.87 (t, 3 H, OCH_2CH_3 , J = 6.9 Hz); diagnostic ¹H NMR signals utilized for the estimation of endo/exo ratio (by integration) for the minor cycloadduct 3.05 (m, 1 H, C4-H), 1.84 (m, 1 H, C3-H_{eq}); ¹³C NMR (CDCl₃, 50 MHz, ppm) 173.4 (CO₂Et), 159.7 (C aromatic), 133.2 (CH aromatic), 129.7 (CH aromatic), 127.4 (CH aromatic), 124.7 (CH, C6), 107.2 (CH, C5), 61.4 (CO₂CH₂CH₃), 53.0 (CH, C2), 35.0 (CH, C4), 31.9 (CH₂), 31.8 (CH₂), 29.3 (CH₂, C3), 26.5 (CH₂), 25.8 (CH₂), 22.8 (CH₃), 14.2 (CO₂CH₂CH₃); IR (neat) ν_{max} 2928, 2857, 1734, 1685, 1654, 1559, 1541, 1508, 1458, 1447, 1362, 1339, 1171, 1096, 1030, 914, 727 cm⁻¹; EIMS m/e (relative intensity) 379 (M⁺, 4), 307 (9), 306 (46), 238 (34), 220 (14), 141 (20), 94 (14), 81 (17), 80 (base), 78 (11), 77 (79), 69 (12), 67 (13), 57 (11), 55 (22), 53 (15), 51 (10); CIMS (2methylpropane) m/e (relative intensity) 380 (M + H⁺, base); EIHRMS m/e 379.1821 (C₂₀H₂₉NO₄S requires 379.1817).

Acknowledgment. The work was assisted through the financial support of the National Institutes of Health (Grant No. CA 42056), a Graduate Fellowship of the ACS Division of Organic Chemistry (W.L.C., 1990–1991) sponsored by ICI Americas, Inc., and a Purdue University David Ross Graduate Fellowship (T.T.C., 1990–1992). We thank R. J. Mathvink and J. M. Wiggins for the initial preparations of 15 and Professor F. W. Fowler for stimulating discussions and for sharing the results of unpublished efforts in progress in his laboratory (ref 13). The single-crystal X-ray structure analysis of 9, 21a, 28a, 40-endo, 45-endo, and 48-endo were conducted by Dr. P. Fanwick of the Purdue University X-ray crystallography facility.

Supplementary Material Available: ORTEPS of the single-crystal X-ray structures of 9, 21a, 28a, 40-endo, 45-endo, and 48-endo, NOE summary, and summary of epimerization studies (9 pages). Ordering information is given on any current masthead page.